Penalized Best Linear Prediction of True Test Scores

In best linear prediction (BLP), a true test score is predicted by observed item scores and by ancillary test data. If the use of BLP rather than a more direct estimate of a true score has disparate impact for different demographic groups, then a fairness issue arises. To improve population invarian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychometrika 2019-03, Vol.84 (1), p.186-211
Hauptverfasser: Yao, Lili, Haberman, Shelby J., Zhang, Mo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In best linear prediction (BLP), a true test score is predicted by observed item scores and by ancillary test data. If the use of BLP rather than a more direct estimate of a true score has disparate impact for different demographic groups, then a fairness issue arises. To improve population invariance but to preserve much of the efficiency of BLP, a modified approach, penalized best linear prediction, is proposed that weights both mean square error of prediction and a quadratic measure of subgroup biases. The proposed methodology is applied to three high-stakes writing assessments.
ISSN:0033-3123
1860-0980
DOI:10.1007/s11336-018-9636-7