RegressionExplorer: Interactive Exploration of Logistic Regression Models with Subgroup Analysis

We present RegressionExplorer, a Visual Analytics tool for the interactive exploration of logistic regression models. Our application domain is Clinical Biostatistics, where models are derived from patient data with the aim to obtain clinically meaningful insights and consequences. Development and i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2019-01, Vol.25 (1), p.246-255
Hauptverfasser: Dingen, Dennis, van't Veer, Marcel, Houthuizen, Patrick, Mestrom, Eveline H. J., Korsten, Erik H. H. M., Bouwman, Arthur R. A., van Wijk, Jarke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present RegressionExplorer, a Visual Analytics tool for the interactive exploration of logistic regression models. Our application domain is Clinical Biostatistics, where models are derived from patient data with the aim to obtain clinically meaningful insights and consequences. Development and interpretation of a proper model requires domain expertise and insight into model characteristics. Because of time constraints, often a limited number of candidate models is evaluated. RegressionExplorer enables experts to quickly generate, evaluate, and compare many different models, taking the workflow for model development as starting point. Global patterns in parameter values of candidate models can be explored effectively. In addition, experts are enabled to compare candidate models across multiple subpopulations. The insights obtained can be used to formulate new hypotheses or to steer model development. The effectiveness of the tool is demonstrated for two uses cases: prediction of a cardiac conduction disorder in patients after receiving a heart valve implant and prediction of hypernatremia in critically ill patients.
ISSN:1077-2626
1941-0506
DOI:10.1109/TVCG.2018.2865043