Stein-Rule Estimation in Mixed Regression Models

This paper considers a Stein‐rule mixed regression estimator for estimating a normal linear regression model in the presence of stochastic linear constraints. We derive the small disturbance asymptotic bias and risk of the proposed estimator, and analytically compare its risk with other related esti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrical journal 2000-05, Vol.42 (2), p.203-214
Hauptverfasser: Shalabh, Vorname, Wan, A.T.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers a Stein‐rule mixed regression estimator for estimating a normal linear regression model in the presence of stochastic linear constraints. We derive the small disturbance asymptotic bias and risk of the proposed estimator, and analytically compare its risk with other related estimators. A Monte‐Carlo experiment investigates the empirical risk performance of the proposed estimator.
ISSN:0323-3847
1521-4036
DOI:10.1002/(SICI)1521-4036(200005)42:2<203::AID-BIMJ203>3.0.CO;2-0