Aerosol-Induced Large-Scale Variability in Precipitation over the Tropical Atlantic

Multiyear satellite observations are used to document a relationship between the large-scale variability in precipitation over the tropical Atlantic and aerosol traced to African sources. During boreal winter and spring there is a significant reduction in precipitation south of the Atlantic marine i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2009-10, Vol.22 (19), p.4970-4988
Hauptverfasser: Huang, Jingfeng, Zhang, Chidong, Prospero, Joseph M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multiyear satellite observations are used to document a relationship between the large-scale variability in precipitation over the tropical Atlantic and aerosol traced to African sources. During boreal winter and spring there is a significant reduction in precipitation south of the Atlantic marine intertropical convergence zone (ITCZ) during months when aerosol concentrations are anomalously high over a large domain of the tropical Atlantic Ocean. This reduction cannot be linearly attributed to known climate factors such as El Niño–Southern Oscillation, the North Atlantic Oscillation, and zonal and meridional modes of tropical Atlantic sea surface temperature or to meteorological factors such as water vapor. The fractional variance in precipitation related to aerosol is about 12% of the total interannual variance, which is of the same order of magnitude as that related to each of the known climate and weather factors. A backward trajectory analysis confirms the African origin of aerosols that directly affect the changes in precipitation. The reduction in mean precipitation mainly comes from decreases in moderate rain rates (10–20 mm day−1), while light rain (
ISSN:0894-8755
1520-0442
DOI:10.1175/2009JCLI2531.1