Iron(III) accumulations in inland saline waterways, Hunter Valley, Australia: Mineralogy, micromorphology and pore-water geochemistry

Discharge of Fe(II)-rich groundwaters into surface-waters results in the accumulation of Fe(III)-minerals in salinized sand-bed waterways of the Hunter Valley, Australia. The objective of this study was to characterise the mineralogy, micromorphology and pore-water geochemistry of these Fe(III) accu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied geochemistry 2009-10, Vol.24 (10), p.1825-1834
Hauptverfasser: Isaacson, Lloyd S., Burton, Edward D., Bush, Richard T., Mitchell, David R.G., Johnston, Scott G., Macdonald, Bennett C.T., Sullivan, Leigh A., White, Ian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1834
container_issue 10
container_start_page 1825
container_title Applied geochemistry
container_volume 24
creator Isaacson, Lloyd S.
Burton, Edward D.
Bush, Richard T.
Mitchell, David R.G.
Johnston, Scott G.
Macdonald, Bennett C.T.
Sullivan, Leigh A.
White, Ian
description Discharge of Fe(II)-rich groundwaters into surface-waters results in the accumulation of Fe(III)-minerals in salinized sand-bed waterways of the Hunter Valley, Australia. The objective of this study was to characterise the mineralogy, micromorphology and pore-water geochemistry of these Fe(III) accumulations. Pore-waters had a circumneutral pH (6.2–7.2), were sub-oxic to oxic (Eh 59–453 mV), and had dissolved Fe(II) concentrations up to 81.6 mg L −1. X-ray diffraction (XRD) on natural and acid-ammonium-oxalate (AAO) extracted samples indicated a dominance of 2-line ferrihydrite in most samples, with lesser amounts of goethite, lepidocrocite, quartz, and alumino-silicate clays. The majority of Fe in the samples was bound in the AAO extractable fraction (Fe Ox) relative to the Na-dithionite extractable fraction (Fe Di), with generally high Fe Ox:Fe Di ratios (0.52–0.92). The presence of nano-crystalline 2-line ferrihydrite (Fe 5HO 3·4H 2O) with lesser amounts of goethite ( α-FeOOH) was confirmed by scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX), and transmission electron microscopy (TEM) coupled with selected area electron diffraction (SAED). In addition, it was found that lepidocrocite ( γ-FeOOH), which occurred as nanoparticles as little as ∼5 lattice spacings thick perpendicular to the (0 2 0) lattice plane, was also present in the studied Fe(III) deposits. Overall, the results highlight the complex variability in the crystallinity and particle-size of Fe(III)-minerals which form via oxidation of Fe(II)-rich groundwaters in sand-bed streams. This variability may be attributed to: (1) divergent precipitation conditions influencing the Fe(II) oxidation rate and the associated supply and hydrolysis of the Fe(III) ion, (2) the effect of interfering compounds, and (3) the influence of bacteria, especially Leptothrix ochracea.
doi_str_mv 10.1016/j.apgeochem.2009.06.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21089952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S088329270900184X</els_id><sourcerecordid>21089952</sourcerecordid><originalsourceid>FETCH-LOGICAL-a399t-81adb3f527b28619d20a901950bac8f14b5b924f472c051472693dab05c3b9733</originalsourceid><addsrcrecordid>eNqFkMFO3DAQhi1UpG6hz1BfQK1EwtiJk7i3FSoQCcSl7dWaOA54lcTBTor2AXjvetkVVyRLMxp9_z-en5BvDFIGrLjcpDg9GqefzJByAJlCkQLkR2TFqpInkmX5J7KCqsoSLnn5mXwJYQMAogS-Iq-1d-P3uq5_UNR6GZYeZ-vGQO0YX49jSwP2djT0BWfjX3AbLujtMsae_sW-N9sLul7C7COEP-l9JGPrHuN4sNq7wfnpye0GdOc1OW-SNyd6-LON2u0pOe6wD-broZ6QP9e_fl_dJncPN_XV-i7BTMo5qRi2TdYJXja8KphsOaAEJgU0qKuO5Y1oJM-7vOQaBIulkFmLDQidNbLMshNyvvedvHteTJhV3K9NH-80bgmKM6ikFDyC5R6MJ4TgTacmbwf0W8VA7WJXG_Ueu9rFrqBQMfaoPDuswKCx7zyO2oZ3OY-sKHIRufWeM_Hef9Z4FbQ1ozat9UbPqnX2w13_ASxYnpc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21089952</pqid></control><display><type>article</type><title>Iron(III) accumulations in inland saline waterways, Hunter Valley, Australia: Mineralogy, micromorphology and pore-water geochemistry</title><source>Elsevier ScienceDirect Journals</source><creator>Isaacson, Lloyd S. ; Burton, Edward D. ; Bush, Richard T. ; Mitchell, David R.G. ; Johnston, Scott G. ; Macdonald, Bennett C.T. ; Sullivan, Leigh A. ; White, Ian</creator><creatorcontrib>Isaacson, Lloyd S. ; Burton, Edward D. ; Bush, Richard T. ; Mitchell, David R.G. ; Johnston, Scott G. ; Macdonald, Bennett C.T. ; Sullivan, Leigh A. ; White, Ian</creatorcontrib><description>Discharge of Fe(II)-rich groundwaters into surface-waters results in the accumulation of Fe(III)-minerals in salinized sand-bed waterways of the Hunter Valley, Australia. The objective of this study was to characterise the mineralogy, micromorphology and pore-water geochemistry of these Fe(III) accumulations. Pore-waters had a circumneutral pH (6.2–7.2), were sub-oxic to oxic (Eh 59–453 mV), and had dissolved Fe(II) concentrations up to 81.6 mg L −1. X-ray diffraction (XRD) on natural and acid-ammonium-oxalate (AAO) extracted samples indicated a dominance of 2-line ferrihydrite in most samples, with lesser amounts of goethite, lepidocrocite, quartz, and alumino-silicate clays. The majority of Fe in the samples was bound in the AAO extractable fraction (Fe Ox) relative to the Na-dithionite extractable fraction (Fe Di), with generally high Fe Ox:Fe Di ratios (0.52–0.92). The presence of nano-crystalline 2-line ferrihydrite (Fe 5HO 3·4H 2O) with lesser amounts of goethite ( α-FeOOH) was confirmed by scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX), and transmission electron microscopy (TEM) coupled with selected area electron diffraction (SAED). In addition, it was found that lepidocrocite ( γ-FeOOH), which occurred as nanoparticles as little as ∼5 lattice spacings thick perpendicular to the (0 2 0) lattice plane, was also present in the studied Fe(III) deposits. Overall, the results highlight the complex variability in the crystallinity and particle-size of Fe(III)-minerals which form via oxidation of Fe(II)-rich groundwaters in sand-bed streams. This variability may be attributed to: (1) divergent precipitation conditions influencing the Fe(II) oxidation rate and the associated supply and hydrolysis of the Fe(III) ion, (2) the effect of interfering compounds, and (3) the influence of bacteria, especially Leptothrix ochracea.</description><identifier>ISSN: 0883-2927</identifier><identifier>EISSN: 1872-9134</identifier><identifier>DOI: 10.1016/j.apgeochem.2009.06.004</identifier><identifier>CODEN: APPGEY</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Geochemistry ; Leptothrix ochracea ; Pollution, environment geology</subject><ispartof>Applied geochemistry, 2009-10, Vol.24 (10), p.1825-1834</ispartof><rights>2009 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a399t-81adb3f527b28619d20a901950bac8f14b5b924f472c051472693dab05c3b9733</citedby><cites>FETCH-LOGICAL-a399t-81adb3f527b28619d20a901950bac8f14b5b924f472c051472693dab05c3b9733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apgeochem.2009.06.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22005645$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Isaacson, Lloyd S.</creatorcontrib><creatorcontrib>Burton, Edward D.</creatorcontrib><creatorcontrib>Bush, Richard T.</creatorcontrib><creatorcontrib>Mitchell, David R.G.</creatorcontrib><creatorcontrib>Johnston, Scott G.</creatorcontrib><creatorcontrib>Macdonald, Bennett C.T.</creatorcontrib><creatorcontrib>Sullivan, Leigh A.</creatorcontrib><creatorcontrib>White, Ian</creatorcontrib><title>Iron(III) accumulations in inland saline waterways, Hunter Valley, Australia: Mineralogy, micromorphology and pore-water geochemistry</title><title>Applied geochemistry</title><description>Discharge of Fe(II)-rich groundwaters into surface-waters results in the accumulation of Fe(III)-minerals in salinized sand-bed waterways of the Hunter Valley, Australia. The objective of this study was to characterise the mineralogy, micromorphology and pore-water geochemistry of these Fe(III) accumulations. Pore-waters had a circumneutral pH (6.2–7.2), were sub-oxic to oxic (Eh 59–453 mV), and had dissolved Fe(II) concentrations up to 81.6 mg L −1. X-ray diffraction (XRD) on natural and acid-ammonium-oxalate (AAO) extracted samples indicated a dominance of 2-line ferrihydrite in most samples, with lesser amounts of goethite, lepidocrocite, quartz, and alumino-silicate clays. The majority of Fe in the samples was bound in the AAO extractable fraction (Fe Ox) relative to the Na-dithionite extractable fraction (Fe Di), with generally high Fe Ox:Fe Di ratios (0.52–0.92). The presence of nano-crystalline 2-line ferrihydrite (Fe 5HO 3·4H 2O) with lesser amounts of goethite ( α-FeOOH) was confirmed by scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX), and transmission electron microscopy (TEM) coupled with selected area electron diffraction (SAED). In addition, it was found that lepidocrocite ( γ-FeOOH), which occurred as nanoparticles as little as ∼5 lattice spacings thick perpendicular to the (0 2 0) lattice plane, was also present in the studied Fe(III) deposits. Overall, the results highlight the complex variability in the crystallinity and particle-size of Fe(III)-minerals which form via oxidation of Fe(II)-rich groundwaters in sand-bed streams. This variability may be attributed to: (1) divergent precipitation conditions influencing the Fe(II) oxidation rate and the associated supply and hydrolysis of the Fe(III) ion, (2) the effect of interfering compounds, and (3) the influence of bacteria, especially Leptothrix ochracea.</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Geochemistry</subject><subject>Leptothrix ochracea</subject><subject>Pollution, environment geology</subject><issn>0883-2927</issn><issn>1872-9134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkMFO3DAQhi1UpG6hz1BfQK1EwtiJk7i3FSoQCcSl7dWaOA54lcTBTor2AXjvetkVVyRLMxp9_z-en5BvDFIGrLjcpDg9GqefzJByAJlCkQLkR2TFqpInkmX5J7KCqsoSLnn5mXwJYQMAogS-Iq-1d-P3uq5_UNR6GZYeZ-vGQO0YX49jSwP2djT0BWfjX3AbLujtMsae_sW-N9sLul7C7COEP-l9JGPrHuN4sNq7wfnpye0GdOc1OW-SNyd6-LON2u0pOe6wD-broZ6QP9e_fl_dJncPN_XV-i7BTMo5qRi2TdYJXja8KphsOaAEJgU0qKuO5Y1oJM-7vOQaBIulkFmLDQidNbLMshNyvvedvHteTJhV3K9NH-80bgmKM6ikFDyC5R6MJ4TgTacmbwf0W8VA7WJXG_Ueu9rFrqBQMfaoPDuswKCx7zyO2oZ3OY-sKHIRufWeM_Hef9Z4FbQ1ozat9UbPqnX2w13_ASxYnpc</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Isaacson, Lloyd S.</creator><creator>Burton, Edward D.</creator><creator>Bush, Richard T.</creator><creator>Mitchell, David R.G.</creator><creator>Johnston, Scott G.</creator><creator>Macdonald, Bennett C.T.</creator><creator>Sullivan, Leigh A.</creator><creator>White, Ian</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>L.G</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20091001</creationdate><title>Iron(III) accumulations in inland saline waterways, Hunter Valley, Australia: Mineralogy, micromorphology and pore-water geochemistry</title><author>Isaacson, Lloyd S. ; Burton, Edward D. ; Bush, Richard T. ; Mitchell, David R.G. ; Johnston, Scott G. ; Macdonald, Bennett C.T. ; Sullivan, Leigh A. ; White, Ian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a399t-81adb3f527b28619d20a901950bac8f14b5b924f472c051472693dab05c3b9733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Geochemistry</topic><topic>Leptothrix ochracea</topic><topic>Pollution, environment geology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Isaacson, Lloyd S.</creatorcontrib><creatorcontrib>Burton, Edward D.</creatorcontrib><creatorcontrib>Bush, Richard T.</creatorcontrib><creatorcontrib>Mitchell, David R.G.</creatorcontrib><creatorcontrib>Johnston, Scott G.</creatorcontrib><creatorcontrib>Macdonald, Bennett C.T.</creatorcontrib><creatorcontrib>Sullivan, Leigh A.</creatorcontrib><creatorcontrib>White, Ian</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Applied geochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Isaacson, Lloyd S.</au><au>Burton, Edward D.</au><au>Bush, Richard T.</au><au>Mitchell, David R.G.</au><au>Johnston, Scott G.</au><au>Macdonald, Bennett C.T.</au><au>Sullivan, Leigh A.</au><au>White, Ian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iron(III) accumulations in inland saline waterways, Hunter Valley, Australia: Mineralogy, micromorphology and pore-water geochemistry</atitle><jtitle>Applied geochemistry</jtitle><date>2009-10-01</date><risdate>2009</risdate><volume>24</volume><issue>10</issue><spage>1825</spage><epage>1834</epage><pages>1825-1834</pages><issn>0883-2927</issn><eissn>1872-9134</eissn><coden>APPGEY</coden><abstract>Discharge of Fe(II)-rich groundwaters into surface-waters results in the accumulation of Fe(III)-minerals in salinized sand-bed waterways of the Hunter Valley, Australia. The objective of this study was to characterise the mineralogy, micromorphology and pore-water geochemistry of these Fe(III) accumulations. Pore-waters had a circumneutral pH (6.2–7.2), were sub-oxic to oxic (Eh 59–453 mV), and had dissolved Fe(II) concentrations up to 81.6 mg L −1. X-ray diffraction (XRD) on natural and acid-ammonium-oxalate (AAO) extracted samples indicated a dominance of 2-line ferrihydrite in most samples, with lesser amounts of goethite, lepidocrocite, quartz, and alumino-silicate clays. The majority of Fe in the samples was bound in the AAO extractable fraction (Fe Ox) relative to the Na-dithionite extractable fraction (Fe Di), with generally high Fe Ox:Fe Di ratios (0.52–0.92). The presence of nano-crystalline 2-line ferrihydrite (Fe 5HO 3·4H 2O) with lesser amounts of goethite ( α-FeOOH) was confirmed by scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX), and transmission electron microscopy (TEM) coupled with selected area electron diffraction (SAED). In addition, it was found that lepidocrocite ( γ-FeOOH), which occurred as nanoparticles as little as ∼5 lattice spacings thick perpendicular to the (0 2 0) lattice plane, was also present in the studied Fe(III) deposits. Overall, the results highlight the complex variability in the crystallinity and particle-size of Fe(III)-minerals which form via oxidation of Fe(II)-rich groundwaters in sand-bed streams. This variability may be attributed to: (1) divergent precipitation conditions influencing the Fe(II) oxidation rate and the associated supply and hydrolysis of the Fe(III) ion, (2) the effect of interfering compounds, and (3) the influence of bacteria, especially Leptothrix ochracea.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.apgeochem.2009.06.004</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0883-2927
ispartof Applied geochemistry, 2009-10, Vol.24 (10), p.1825-1834
issn 0883-2927
1872-9134
language eng
recordid cdi_proquest_miscellaneous_21089952
source Elsevier ScienceDirect Journals
subjects Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Exact sciences and technology
Geochemistry
Leptothrix ochracea
Pollution, environment geology
title Iron(III) accumulations in inland saline waterways, Hunter Valley, Australia: Mineralogy, micromorphology and pore-water geochemistry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T00%3A22%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iron(III)%20accumulations%20in%20inland%20saline%20waterways,%20Hunter%20Valley,%20Australia:%20Mineralogy,%20micromorphology%20and%20pore-water%20geochemistry&rft.jtitle=Applied%20geochemistry&rft.au=Isaacson,%20Lloyd%20S.&rft.date=2009-10-01&rft.volume=24&rft.issue=10&rft.spage=1825&rft.epage=1834&rft.pages=1825-1834&rft.issn=0883-2927&rft.eissn=1872-9134&rft.coden=APPGEY&rft_id=info:doi/10.1016/j.apgeochem.2009.06.004&rft_dat=%3Cproquest_cross%3E21089952%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21089952&rft_id=info:pmid/&rft_els_id=S088329270900184X&rfr_iscdi=true