Iron(III) accumulations in inland saline waterways, Hunter Valley, Australia: Mineralogy, micromorphology and pore-water geochemistry
Discharge of Fe(II)-rich groundwaters into surface-waters results in the accumulation of Fe(III)-minerals in salinized sand-bed waterways of the Hunter Valley, Australia. The objective of this study was to characterise the mineralogy, micromorphology and pore-water geochemistry of these Fe(III) accu...
Gespeichert in:
Veröffentlicht in: | Applied geochemistry 2009-10, Vol.24 (10), p.1825-1834 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Discharge of Fe(II)-rich groundwaters into surface-waters results in the accumulation of Fe(III)-minerals in salinized sand-bed waterways of the Hunter Valley, Australia. The objective of this study was to characterise the mineralogy, micromorphology and pore-water geochemistry of these Fe(III) accumulations. Pore-waters had a circumneutral pH (6.2–7.2), were sub-oxic to oxic (Eh 59–453
mV), and had dissolved Fe(II) concentrations up to 81.6
mg
L
−1. X-ray diffraction (XRD) on natural and acid-ammonium-oxalate (AAO) extracted samples indicated a dominance of 2-line ferrihydrite in most samples, with lesser amounts of goethite, lepidocrocite, quartz, and alumino-silicate clays. The majority of Fe in the samples was bound in the AAO extractable fraction (Fe
Ox) relative to the Na-dithionite extractable fraction (Fe
Di), with generally high Fe
Ox:Fe
Di ratios (0.52–0.92). The presence of nano-crystalline 2-line ferrihydrite (Fe
5HO
3·4H
2O) with lesser amounts of goethite (
α-FeOOH) was confirmed by scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX), and transmission electron microscopy (TEM) coupled with selected area electron diffraction (SAED). In addition, it was found that lepidocrocite (
γ-FeOOH), which occurred as nanoparticles as little as ∼5 lattice spacings thick perpendicular to the (0
2
0) lattice plane, was also present in the studied Fe(III) deposits. Overall, the results highlight the complex variability in the crystallinity and particle-size of Fe(III)-minerals which form via oxidation of Fe(II)-rich groundwaters in sand-bed streams. This variability may be attributed to: (1) divergent precipitation conditions influencing the Fe(II) oxidation rate and the associated supply and hydrolysis of the Fe(III) ion, (2) the effect of interfering compounds, and (3) the influence of bacteria, especially
Leptothrix ochracea. |
---|---|
ISSN: | 0883-2927 1872-9134 |
DOI: | 10.1016/j.apgeochem.2009.06.004 |