Voltage-dependent calcium signaling in rat cerebellar unipolar brush cells

Abstract Unipolar brush cells (UBCs) are a class of excitatory interneuron found in the granule cell layer of the vestibulocerebellum. Mossy fibers form excitatory inputs on to the paint brush shaped dendrioles in the form of giant, glutamatergic synapses, activation of which results in prolonged bu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience 2009-09, Vol.162 (3), p.702-712
Hauptverfasser: Birnstiel, S, Slater, N.T, McCrimmon, D.R, Mugnaini, E, Hartell, N.A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Unipolar brush cells (UBCs) are a class of excitatory interneuron found in the granule cell layer of the vestibulocerebellum. Mossy fibers form excitatory inputs on to the paint brush shaped dendrioles in the form of giant, glutamatergic synapses, activation of which results in prolonged bursts of action potentials in the postsynaptic UBC. The axons of UBCs themselves form mossy fiber contacts with other UBCs and granule cells, forming an excitatory, intrinsic cerebellar network that has the capacity to synchronize and amplify mossy fiber inputs to potentially large populations of granule cells. In this paper, we demonstrate that UBCs in rat cerebellar slices express low voltage activated (LVA) fast-inactivating and high voltage activated (HVA) slowly inactivating calcium channels. LVA calcium currents are mediated by T-type calcium channels and they are associated with calcium increases in the dendrites and to a lesser extent the cell soma. HVA currents, mediated by L-type calcium channels, are slowly inactivating and they produce larger overall increases in intracellular calcium but with a similar distribution pattern. We review these observations alongside several recent papers that examine how intrinsic membrane properties influence UBCs firing patterns and we discuss how UBC signaling may affect downstream cerebellar processing.
ISSN:0306-4522
1873-7544
DOI:10.1016/j.neuroscience.2009.01.051