Bayesian Reconstruction of Natural Images from Human Brain Activity

Recent studies have used fMRI signals from early visual areas to reconstruct simple geometric patterns. Here, we demonstrate a new Bayesian decoder that uses fMRI signals from early and anterior visual areas to reconstruct complex natural images. Our decoder combines three elements: a structural enc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2009-09, Vol.63 (6), p.902-915
Hauptverfasser: Naselaris, Thomas, Prenger, Ryan J, Kay, Kendrick N, Oliver, Michael, Gallant, Jack L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent studies have used fMRI signals from early visual areas to reconstruct simple geometric patterns. Here, we demonstrate a new Bayesian decoder that uses fMRI signals from early and anterior visual areas to reconstruct complex natural images. Our decoder combines three elements: a structural encoding model that characterizes responses in early visual areas, a semantic encoding model that characterizes responses in anterior visual areas, and prior information about the structure and semantic content of natural images. By combining all these elements, the decoder produces reconstructions that accurately reflect both the spatial structure and semantic category of the objects contained in the observed natural image. Our results show that prior information has a substantial effect on the quality of natural image reconstructions. We also demonstrate that much of the variance in the responses of anterior visual areas to complex natural images is explained by the semantic category of the image alone.
ISSN:0896-6273
DOI:10.1016/j.neuron.2009.09.006Article