Localization of volatile isotopes on a cryotrap

Neutron-induced fission of uranium allows for the production of high-intensity neutron-rich radioactive ion beams. However, also large quantities of unwanted volatile radioactive species are produced that have to be hindered from contaminating the beamline and vacuum system of the facility. In the f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms Beam interactions with materials and atoms, 2008-10, Vol.266 (19-20), p.4505-4509
Hauptverfasser: Thirolf, P.G., Gross, M., Habs, D., Kohlhund, A., Nebel, F., Neumayr, J.B., Stoepler, R., Szerypo, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neutron-induced fission of uranium allows for the production of high-intensity neutron-rich radioactive ion beams. However, also large quantities of unwanted volatile radioactive species are produced that have to be hindered from contaminating the beamline and vacuum system of the facility. In the framework of radioprotection studies within the MAFF project at the FRM II in Garching with 1014fission events/s [D. Habs et al., The Munich accelerator for fission fragments MAFF, Nucl. Instr. and Meth. B 204 (2003) 739], the performance of a cryotrap system has been studied, designed to localize gaseous radioactivity close to its origin. These studies provide important radioprotection information for the planned EURISOL facility with 1015fission events/s. Design considerations of a compact cryotrap operated with cold helium gas at a saturation temperature around 18K will be presented. Activity distribution calculations of the fission source, the cryotrap and the subsequent vacuum system result in a prediction of the retention capability of the cryotrap system of 99.98%. These design calculations have been experimentally verified with three cryotrap prototypes differing in cold surface area as well as in their internal helium gas flow characteristics. Retention capabilities have been measured with and without passive shielding of the external thermal load (300K) using different tracer gases and an inclusive pressure-related diagnostics as well as mass-spectroscopic measurements.
ISSN:0168-583X
1872-9584
DOI:10.1016/j.nimb.2008.05.075