Deterministic Neural Classification
This letter presents a minimum classification error learning formulation for a single-layer feedforward network (SLFN). By approximating the nonlinear counting step function using a quadratic function, the classification error rate is shown to be deterministically solvable. Essentially the derived s...
Gespeichert in:
Veröffentlicht in: | Neural computation 2008-06, Vol.20 (6), p.1565-1595 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This letter presents a minimum classification error learning formulation for a single-layer feedforward network (SLFN). By approximating the nonlinear counting step function using a quadratic function, the classification error rate is shown to be deterministically solvable. Essentially the derived solution is related to an existing weighted least-squares method with class-specific weights set according to the size of data set. By considering the class-specific weights as adjustable parameters, the learning formulation extends the classification robustness of the SLFN without sacrificing its intrinsic advantage of being a closed-form algorithm. While the method is applicable to other linear formulations, our empirical results indicate SLFN's effectiveness on classification generalization. |
---|---|
ISSN: | 0899-7667 1530-888X |
DOI: | 10.1162/neco.2007.04-07-508 |