Agronomic and physiological contributions to the yield improvement of soybean cultivars released from 1950 to 2006 in Northeast China
Increasing yield is a high priority in most breeding programs. Approximately 600 soybean cultivars had been released by the end of the last century in Northeast China. Understanding the agronomic and physiological changes is essential for planning further plant breeding strategies in soybean. In thi...
Gespeichert in:
Veröffentlicht in: | Field crops research 2010-01, Vol.115 (1), p.116-123 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Increasing yield is a high priority in most breeding programs. Approximately 600 soybean cultivars had been released by the end of the last century in Northeast China. Understanding the agronomic and physiological changes is essential for planning further plant breeding strategies in soybean. In this study, 45 representative soybean cultivars, from maturity groups 00 and 0, released from 1950 to 2006 in Northeast China were compared in field conditions for 3 consecutive years. A positive correlation between seed yield and year of cultivar release was indicated with a 0.58% average annual increase. Seed number per plant was the most important contributor to yield gain, with a 0.41% increase per year. Pod number per plant and seed size varied slightly with the year of cultivar release. Although variation in protein was from 37.0% to 45.5%, and oil concentration was from 16.7% to 22.0%, their concentrations were not consistently related to year of cultivar release. A 33% increase in the photosynthetic rate, 10.6% increase in plant dry weight and 19.0% increase in harvest index (HI) were found, while leaf area index (LAI) decreased by 17.3%. Modern cultivars have higher photosynthetic rates than their predecessors. The reduced plant height gave increased resistance to lodging, with the lodging score dropping from 3.2 in 1951 to 1.0 in 2006. Seed resistances to disease and pest infestation were also improved. Yield stability was enhanced over years, which could be attributed to the stable pod production across different environments. A flow diagram to explain the contributors to genetic improvement of soybeans in Northeast China was developed. |
---|---|
ISSN: | 0378-4290 1872-6852 |
DOI: | 10.1016/j.fcr.2009.10.016 |