Lipase immobilization on high water adsorbing capacity bagasse: applications in bio-based plasticizer synthesis

This study investigates the structure and water adsorbing capacity of bagasse and of sodium hydroxide pretreated bagasse. The structures of bagasse and bagasse-NaOH were compared by SEM and XRD. Candida antarctica lipase B was then immobilized on bagasse, bagasse-NaOH and DPA@bagasse-NaOH. The expre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology reports 2018-12, Vol.45 (6), p.2095-2102
Hauptverfasser: Cui, Caixia, Cai, Di
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigates the structure and water adsorbing capacity of bagasse and of sodium hydroxide pretreated bagasse. The structures of bagasse and bagasse-NaOH were compared by SEM and XRD. Candida antarctica lipase B was then immobilized on bagasse, bagasse-NaOH and DPA@bagasse-NaOH. The expressed activity and immobilization yield of lipase immobilized on bagasse-NaOH (1.0%) was 36% and 45% higher than that on bagasse. When dopamine (DPA) was used as cationic polymer monomer via self-polymerization for mediating immobilization, the protein loading amounts and activity of lipase immobilized on DPA@bagasse-NaOH were higher than that of bagasse-NaOH. When the DPA concentration was 100 mg/ml, the immobilized lipase expressed activity reached its highest value (800 U/g), where the immobilization yield achieved 96.8%, which was 3.93-fold of lipase immobilized on native bagasse (24.6%). Then the immobilized lipases were used to synthesize a bio-based plasticizer. Lipase immobilized on DPA@bagasse-NaOH exhibited a significantly improved operational stability. Even after 12 batches, a high ester yield (84.2%) was maintained. Additionally, poly (vinyl chloride) PVC blends plasticized with methyl oleate as a secondary plasticizer were investigated. It was discovered that methyl oleate can be used as an effective bio-based plasticizer for PVC. These results indicate that bagasse with high water adsorbing capacity and self-polymerized DPA layer could create a favorable microenvironment for bio-based plasticizer synthesis in esterification reactions.
ISSN:0301-4851
1573-4978
DOI:10.1007/s11033-018-4366-6