Characterizing d-dimensional quantum channels by means of quantum process tomography
In this Letter, we propose a simple optical architecture based on phase-only programmable spatial light modulators, in order to characterize general processes on photonic spatial quantum systems in a d>2 Hilbert space. We demonstrate the full reconstruction of typical noises affecting quantum com...
Gespeichert in:
Veröffentlicht in: | Optics letters 2018-09, Vol.43 (18), p.4398-4401 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this Letter, we propose a simple optical architecture based on phase-only programmable spatial light modulators, in order to characterize general processes on photonic spatial quantum systems in a d>2 Hilbert space. We demonstrate the full reconstruction of typical noises affecting quantum computing, such as amplitude shifts, phase shifts, and depolarizing channels in dimension d=5. We have also reconstructed simulated atmospheric turbulences affecting a free-space transmission of qudits in dimension d=4. In each case, quantum process tomography was performed in order to obtain the matrix χ that fully describes the corresponding quantum channel, E. Fidelities between the states are experimentally obtained after going through the channel, and the expected ones are above 97%. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.43.004398 |