The influence of dissolved oxygen on partial nitritation/anammox performance and microbial community of the 200,000 m3/d activated sludge process at the Changi water reclamation plant (2011 to 2016)

Mainstream partial nitritation/anammox (PN/A), coupled with excess biological phosphorus removal, in a 200,000 m3/d step-feed activated sludge process (Train 2) in the Changi Water Reclamation Plant (WRP), Singapore, has been studied and reported. This paper presents an overview of process performan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water science and technology 2018-09, Vol.78 (3), p.634-643
Hauptverfasser: Cao, Yeshi, Kwok, Bee Hong, van Loosdrecht, Mark C. M., Daigger, Glen, Png, Hui Yi, Long, Wah Yuen, Eng, Ooi Kian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mainstream partial nitritation/anammox (PN/A), coupled with excess biological phosphorus removal, in a 200,000 m3/d step-feed activated sludge process (Train 2) in the Changi Water Reclamation Plant (WRP), Singapore, has been studied and reported. This paper presents an overview of process performance and the microbial community during the period from 2011 to 2016. The site data showed that, along with the reduction of dissolved oxygen (DO) from 1.7 to 1.0 mg O2/L in the aeration zones, the concentrations of ammonium and nitrate of the final effluent increased, while nitrite decreased, resulting in an increase of 2.4 mg N/L of total inorganic nitrogen. Autotrophic nitrogen removal was higher than heterotrophic biological nitrogen removal under higher DO concentration conditions, but decreased under low DO operating condition. These macro-scale changes were caused by shifts of the nitrogen-converting microbial community. The ammonia oxidizing bacteria (AOB) population abundance was reduced by 30 times, while the nitrite oxidizing bacteria (NOB) population abundance and specific activity increased significantly with a shift of dominant genus from Nitrobacter to Nitrospira. The ratio of AOB and NOB specific activities were reduced from 12.8 to 1.6, and the ex situ nitrite accumulation ratio reduced from 76% to 29%. Changes in the microbial community and overall process performance illustrated that, compared to the excellent NOB suppression under high DO conditions, NOB were more active after the DO concentration reduction despite still being partly suppressed. This case study demonstrated, for the first time, the influence of DO reduction on the nitrogen conversion microbial community and PN/A process performance for a suspended growth system. Its relevance to biofilm and hybrid PN/A processes is also discussed.
ISSN:0273-1223
1996-9732
DOI:10.2166/wst.2018.333