Pparγ Is Involved in the Transcriptional Regulation of Liver LC-PUFA Biosynthesis by Targeting the Δ6Δ5 Fatty Acyl Desaturase Gene in the Marine Teleost Siganus canaliculatus
As the first marine teleost demonstrated to have the ability of long-chain polyunsaturated fatty acids (LC-PUFA) biosynthesis from C 18 PUFA precursors, the rabbitfish Siganus canaliculatus provides us a unique model for clarifying the regulatory mechanisms of LC-PUFA biosynthesis in teleosts aiming...
Gespeichert in:
Veröffentlicht in: | Marine biotechnology (New York, N.Y.) N.Y.), 2019-02, Vol.21 (1), p.19-29 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As the first marine teleost demonstrated to have the ability of long-chain polyunsaturated fatty acids (LC-PUFA) biosynthesis from C
18
PUFA precursors, the rabbitfish
Siganus canaliculatus
provides us a unique model for clarifying the regulatory mechanisms of LC-PUFA biosynthesis in teleosts aiming at the replacement of dietary fish oil (rich in LC-PUFA) with vegetable oils (rich in C
18
PUFA precursors but devoid of LC-PUFA). In the study of transcription regulation of gene encoding the Δ6Δ5 fatty acyl desaturase (Δ6Δ5 Fads), a rate-limiting enzyme catalyzing the first step of LC-PUFA biosynthesis in rabbitfish, a binding site for the transcription factor (TF), peroxisome proliferator-activated receptor γ (Pparγ), was predicted in Δ6Δ5
fads2
promoter by bioinformatics analysis, and thus the present study focused on the regulatory roles of Pparγ on Δ6Δ5
fads2
. First, the activity of the Δ6Δ5
fads2
promoter was proved to be downregulated by
pparγ
overexpression and upregulated by treatment of Pparγ antagonist (GW9662), respectively, in HEK 293T cells with the dual luciferase reporter assay. Pparγ was further confirmed to interact with the promoter by electrophoretic mobility shift assay. Moreover, in
S. canaliculatus
hepatocyte line (SCHL) cells, GW9662 decreased the expression of
pparγ
together with increase of Δ6Δ5
fads2
mRNA. Besides, Δ6Δ5
fads2
expression was increased by
pparγ
RNAi knockdown and reduced by its mRNA overexpression. Furthermore, knockdown of
pparγ
induced a high conversion of 18:3n−3 to 18:4n−3 and 18:2n−6 to 18:3n−6, while
pparγ
mRNA overexpression led to a lower conversion of that, and finally a significant decrease of 20:4n-6(ARA), 20:5n-3(EPA), and 22:6n-3(DHA) production. The results indicate that Pparγ is involved in the transcriptional regulation of liver LC-PUFA biosynthesis by targeting Δ6Δ5
fads2
in rabbitfish, which is the first report of Pparγ involvement in the regulation of LC-PUFA biosynthesis in teleosts. |
---|---|
ISSN: | 1436-2228 1436-2236 |
DOI: | 10.1007/s10126-018-9854-0 |