A Rapid Spectrophotometric Method for the Determination of Molybdenum in Industrial, Environmental, Biological and Soil Samples Using 5,7-Dibromo-8-hydroxyquinoline
A very simple, ultra-sensitive and highly selective non-extractive spectrophotometric method for the determination of trace amount of molybdenum(VI) using 5,7-dibromo-8-hydroxyquinoline (DBHQ) has been developed. 5,7-Dibromo-8-hydroxyquinoline reacts in a slightly acidic solution (0.05 - 1.0 M H2SO4...
Gespeichert in:
Veröffentlicht in: | Analytical Sciences 2002, Vol.18(4), pp.433-439 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A very simple, ultra-sensitive and highly selective non-extractive spectrophotometric method for the determination of trace amount of molybdenum(VI) using 5,7-dibromo-8-hydroxyquinoline (DBHQ) has been developed. 5,7-Dibromo-8-hydroxyquinoline reacts in a slightly acidic solution (0.05 - 1.0 M H2SO4) with molybdenum(VI) to give a deep greenish-yellow chelate which has an absorption maximum at 401 nm. The reaction is instantaneous and the absorbance remains stable for over 24 h. The average molar absorption coefficient and Sandell’s sensitivity were found to be 4.13 × 103 L mol-1 cm-1 and 7 ng cm-2 of molybdenum(VI), respectively. Linear calibration graphs were obtained for 0.1 - 50 μg mL-1 of molybdenum(VI). The stoichiometric composition of the chelate is 1:3 (Mo:DBHQ). A large excess of over 50 cations, anions and some common complexing agents (e.g. EDTA, oxalate, citrate, phosphate, thiourea, SCN-) do not interfere with the determination. The method was successfully used in the determination of molybdenum in several Standard Reference Materials (alloys, steels and waters) as well as in some environmental waters (inland and surface), biological samples (human blood and urine), soil samples, solution containing both molybdenum(V) and molybdenum(VI) and complex synthetic mixtures. The method has high precision and accuracy (S = ± 0.01 for 0.5 μg mL-1). |
---|---|
ISSN: | 0910-6340 1348-2246 |
DOI: | 10.2116/analsci.18.433 |