An Energy‐Based Body Temperature Threshold between Torpor and Normothermia for Small Mammals
Field studies of use of torpor by heterothermic endotherms suffer from the lack of a standardized threshold differentiating torpid body temperatures (T b) from normothermicT b's. This threshold can be more readily observed if metabolic rate (MR) is measured in the laboratory. I digitized figure...
Gespeichert in:
Veröffentlicht in: | Physiological and biochemical zoology 2007-11, Vol.80 (6), p.643-651 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 651 |
---|---|
container_issue | 6 |
container_start_page | 643 |
container_title | Physiological and biochemical zoology |
container_volume | 80 |
creator | Willis, Craig K. R. |
description | Field studies of use of torpor by heterothermic endotherms suffer from the lack of a standardized threshold differentiating torpid body temperatures (T
b) from normothermicT
b's. This threshold can be more readily observed if metabolic rate (MR) is measured in the laboratory. I digitized figures from the literature that depicted simultaneous traces of MR andT
bfrom 32 respirometry runs for 14 mammal species. For each graph, I quantified theT
bmeasured when MR first began to drop at the onset of torpor (T
b‐onset). I used a general linear model to quantify the effect of ambient temperature (T
a) and body mass (BM) onT
b‐onset. For species lighter than 70 g, the model was highly significant and was described by the equation
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $T_{\mathrm{b}\,- \mathrm{onset}\,}=( 0.055\pm 0.014) \mathrm{BM}\,+( 0.071\pm 0.031) T_{\mathrm{a}\,}+( 31.823\pm 0.740) $ \end{document}
. To be conservative, I recommend use of these model parameters minus 1 standard error, which modifies the equation to
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $T_{\mathrm{b}\,- \mathrm{onset}\,}-1\,\mathrm{SE}\,=( 0.041) \mathrm{BM}\,+( 0.040) T_{\mathrm{a}\,}+31.083$ \end{document}
. This approach provides a standardized threshold for differentiating torpor from normothermia that is based on use of energy, the actual currency of interest for studies of torpor in the wild. Few laboratory studies have presented the time‐course data required to quantifyT
b‐onset, so more data are needed to validate |
doi_str_mv | 10.1086/521085 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_21027040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>10.1086/521085</jstor_id><sourcerecordid>10.1086/521085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-df05bfc3bad6e6885fe344549eb96a990794b9cad62862623c695d2b414432d63</originalsourceid><addsrcrecordid>eNqFkLlOxDAURS0EYhngD0AuEF3Ae-ISEJvEUjC0RE78MouSONiJ0HR8At_Il2A0I6bkFb5Pfke3OAgdUnJGSabOJYshN9AulTxNJNN883dnLGHx3UF7IcwJoTQjehvt0FRTEmcXvV20-LoFP1l8f35dmgAWXzq7wGNoOvCmHzzg8dRDmLra4gL6D4AWj53vnMemtfjJ-cb1U_DNzOAqfr40pq7xo2lihn20VcWAg1WO0OvN9fjqLnl4vr2_unhISiHTPrEVkUVV8sJYBSrLZAVcCCk0FFoZrUmqRaHLeGWZYorxUmlpWSGoEJxZxUfodNnbefc-QOjzZhZKqGvTghtCrjLOdSrYv2DUyFIiyBosvQvBQ5V3ftYYv8gpyX-V50vlETxeNQ5FA3aNrRxH4GQJDOV0VpqJ66LOkM_d4NvoZN1ztMTmoXf-r4YTKjOeCf4D-XKRXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21027040</pqid></control><display><type>article</type><title>An Energy‐Based Body Temperature Threshold between Torpor and Normothermia for Small Mammals</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><creator>Willis, Craig K. R.</creator><creatorcontrib>Willis, Craig K. R.</creatorcontrib><description>Field studies of use of torpor by heterothermic endotherms suffer from the lack of a standardized threshold differentiating torpid body temperatures (T
b) from normothermicT
b's. This threshold can be more readily observed if metabolic rate (MR) is measured in the laboratory. I digitized figures from the literature that depicted simultaneous traces of MR andT
bfrom 32 respirometry runs for 14 mammal species. For each graph, I quantified theT
bmeasured when MR first began to drop at the onset of torpor (T
b‐onset). I used a general linear model to quantify the effect of ambient temperature (T
a) and body mass (BM) onT
b‐onset. For species lighter than 70 g, the model was highly significant and was described by the equation
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $T_{\mathrm{b}\,- \mathrm{onset}\,}=( 0.055\pm 0.014) \mathrm{BM}\,+( 0.071\pm 0.031) T_{\mathrm{a}\,}+( 31.823\pm 0.740) $ \end{document}
. To be conservative, I recommend use of these model parameters minus 1 standard error, which modifies the equation to
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $T_{\mathrm{b}\,- \mathrm{onset}\,}-1\,\mathrm{SE}\,=( 0.041) \mathrm{BM}\,+( 0.040) T_{\mathrm{a}\,}+31.083$ \end{document}
. This approach provides a standardized threshold for differentiating torpor from normothermia that is based on use of energy, the actual currency of interest for studies of torpor in the wild. Few laboratory studies have presented the time‐course data required to quantifyT
b‐onset, so more data are needed to validate this relationship.</description><identifier>ISSN: 1522-2152</identifier><identifier>EISSN: 1537-5293</identifier><identifier>DOI: 10.1086/521085</identifier><identifier>PMID: 17910000</identifier><language>eng</language><publisher>United States: The University of Chicago Press</publisher><subject>Animal physiology ; Animal withers ; Animals ; Body Size - physiology ; Body Temperature Regulation - physiology ; Energy ; Energy Metabolism - physiology ; Experimentation ; Gaussian distributions ; Hibernation - physiology ; Mammals ; Mammals - physiology ; Metabolism ; Models, Biological ; Motor Activity - physiology ; Oxygen Consumption ; Thermogenesis ; Torpor</subject><ispartof>Physiological and biochemical zoology, 2007-11, Vol.80 (6), p.643-651</ispartof><rights>2007 by The University of Chicago. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-df05bfc3bad6e6885fe344549eb96a990794b9cad62862623c695d2b414432d63</citedby><cites>FETCH-LOGICAL-c457t-df05bfc3bad6e6885fe344549eb96a990794b9cad62862623c695d2b414432d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,801,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17910000$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Willis, Craig K. R.</creatorcontrib><title>An Energy‐Based Body Temperature Threshold between Torpor and Normothermia for Small Mammals</title><title>Physiological and biochemical zoology</title><addtitle>Physiol Biochem Zool</addtitle><description>Field studies of use of torpor by heterothermic endotherms suffer from the lack of a standardized threshold differentiating torpid body temperatures (T
b) from normothermicT
b's. This threshold can be more readily observed if metabolic rate (MR) is measured in the laboratory. I digitized figures from the literature that depicted simultaneous traces of MR andT
bfrom 32 respirometry runs for 14 mammal species. For each graph, I quantified theT
bmeasured when MR first began to drop at the onset of torpor (T
b‐onset). I used a general linear model to quantify the effect of ambient temperature (T
a) and body mass (BM) onT
b‐onset. For species lighter than 70 g, the model was highly significant and was described by the equation
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $T_{\mathrm{b}\,- \mathrm{onset}\,}=( 0.055\pm 0.014) \mathrm{BM}\,+( 0.071\pm 0.031) T_{\mathrm{a}\,}+( 31.823\pm 0.740) $ \end{document}
. To be conservative, I recommend use of these model parameters minus 1 standard error, which modifies the equation to
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $T_{\mathrm{b}\,- \mathrm{onset}\,}-1\,\mathrm{SE}\,=( 0.041) \mathrm{BM}\,+( 0.040) T_{\mathrm{a}\,}+31.083$ \end{document}
. This approach provides a standardized threshold for differentiating torpor from normothermia that is based on use of energy, the actual currency of interest for studies of torpor in the wild. Few laboratory studies have presented the time‐course data required to quantifyT
b‐onset, so more data are needed to validate this relationship.</description><subject>Animal physiology</subject><subject>Animal withers</subject><subject>Animals</subject><subject>Body Size - physiology</subject><subject>Body Temperature Regulation - physiology</subject><subject>Energy</subject><subject>Energy Metabolism - physiology</subject><subject>Experimentation</subject><subject>Gaussian distributions</subject><subject>Hibernation - physiology</subject><subject>Mammals</subject><subject>Mammals - physiology</subject><subject>Metabolism</subject><subject>Models, Biological</subject><subject>Motor Activity - physiology</subject><subject>Oxygen Consumption</subject><subject>Thermogenesis</subject><subject>Torpor</subject><issn>1522-2152</issn><issn>1537-5293</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkLlOxDAURS0EYhngD0AuEF3Ae-ISEJvEUjC0RE78MouSONiJ0HR8At_Il2A0I6bkFb5Pfke3OAgdUnJGSabOJYshN9AulTxNJNN883dnLGHx3UF7IcwJoTQjehvt0FRTEmcXvV20-LoFP1l8f35dmgAWXzq7wGNoOvCmHzzg8dRDmLra4gL6D4AWj53vnMemtfjJ-cb1U_DNzOAqfr40pq7xo2lihn20VcWAg1WO0OvN9fjqLnl4vr2_unhISiHTPrEVkUVV8sJYBSrLZAVcCCk0FFoZrUmqRaHLeGWZYorxUmlpWSGoEJxZxUfodNnbefc-QOjzZhZKqGvTghtCrjLOdSrYv2DUyFIiyBosvQvBQ5V3ftYYv8gpyX-V50vlETxeNQ5FA3aNrRxH4GQJDOV0VpqJ66LOkM_d4NvoZN1ztMTmoXf-r4YTKjOeCf4D-XKRXg</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Willis, Craig K. R.</creator><general>The University of Chicago Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20071101</creationdate><title>An Energy‐Based Body Temperature Threshold between Torpor and Normothermia for Small Mammals</title><author>Willis, Craig K. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-df05bfc3bad6e6885fe344549eb96a990794b9cad62862623c695d2b414432d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animal physiology</topic><topic>Animal withers</topic><topic>Animals</topic><topic>Body Size - physiology</topic><topic>Body Temperature Regulation - physiology</topic><topic>Energy</topic><topic>Energy Metabolism - physiology</topic><topic>Experimentation</topic><topic>Gaussian distributions</topic><topic>Hibernation - physiology</topic><topic>Mammals</topic><topic>Mammals - physiology</topic><topic>Metabolism</topic><topic>Models, Biological</topic><topic>Motor Activity - physiology</topic><topic>Oxygen Consumption</topic><topic>Thermogenesis</topic><topic>Torpor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Willis, Craig K. R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Physiological and biochemical zoology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Willis, Craig K. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Energy‐Based Body Temperature Threshold between Torpor and Normothermia for Small Mammals</atitle><jtitle>Physiological and biochemical zoology</jtitle><addtitle>Physiol Biochem Zool</addtitle><date>2007-11-01</date><risdate>2007</risdate><volume>80</volume><issue>6</issue><spage>643</spage><epage>651</epage><pages>643-651</pages><issn>1522-2152</issn><eissn>1537-5293</eissn><abstract>Field studies of use of torpor by heterothermic endotherms suffer from the lack of a standardized threshold differentiating torpid body temperatures (T
b) from normothermicT
b's. This threshold can be more readily observed if metabolic rate (MR) is measured in the laboratory. I digitized figures from the literature that depicted simultaneous traces of MR andT
bfrom 32 respirometry runs for 14 mammal species. For each graph, I quantified theT
bmeasured when MR first began to drop at the onset of torpor (T
b‐onset). I used a general linear model to quantify the effect of ambient temperature (T
a) and body mass (BM) onT
b‐onset. For species lighter than 70 g, the model was highly significant and was described by the equation
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $T_{\mathrm{b}\,- \mathrm{onset}\,}=( 0.055\pm 0.014) \mathrm{BM}\,+( 0.071\pm 0.031) T_{\mathrm{a}\,}+( 31.823\pm 0.740) $ \end{document}
. To be conservative, I recommend use of these model parameters minus 1 standard error, which modifies the equation to
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $T_{\mathrm{b}\,- \mathrm{onset}\,}-1\,\mathrm{SE}\,=( 0.041) \mathrm{BM}\,+( 0.040) T_{\mathrm{a}\,}+31.083$ \end{document}
. This approach provides a standardized threshold for differentiating torpor from normothermia that is based on use of energy, the actual currency of interest for studies of torpor in the wild. Few laboratory studies have presented the time‐course data required to quantifyT
b‐onset, so more data are needed to validate this relationship.</abstract><cop>United States</cop><pub>The University of Chicago Press</pub><pmid>17910000</pmid><doi>10.1086/521085</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1522-2152 |
ispartof | Physiological and biochemical zoology, 2007-11, Vol.80 (6), p.643-651 |
issn | 1522-2152 1537-5293 |
language | eng |
recordid | cdi_proquest_miscellaneous_21027040 |
source | MEDLINE; Jstor Complete Legacy |
subjects | Animal physiology Animal withers Animals Body Size - physiology Body Temperature Regulation - physiology Energy Energy Metabolism - physiology Experimentation Gaussian distributions Hibernation - physiology Mammals Mammals - physiology Metabolism Models, Biological Motor Activity - physiology Oxygen Consumption Thermogenesis Torpor |
title | An Energy‐Based Body Temperature Threshold between Torpor and Normothermia for Small Mammals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A49%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Energy%E2%80%90Based%20Body%20Temperature%20Threshold%20between%20Torpor%20and%20Normothermia%20for%20Small%20Mammals&rft.jtitle=Physiological%20and%20biochemical%20zoology&rft.au=Willis,%20Craig%C2%A0K.%C2%A0R.&rft.date=2007-11-01&rft.volume=80&rft.issue=6&rft.spage=643&rft.epage=651&rft.pages=643-651&rft.issn=1522-2152&rft.eissn=1537-5293&rft_id=info:doi/10.1086/521085&rft_dat=%3Cjstor_proqu%3E10.1086/521085%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21027040&rft_id=info:pmid/17910000&rft_jstor_id=10.1086/521085&rfr_iscdi=true |