An Energy‐Based Body Temperature Threshold between Torpor and Normothermia for Small Mammals

Field studies of use of torpor by heterothermic endotherms suffer from the lack of a standardized threshold differentiating torpid body temperatures (T b) from normothermicT b's. This threshold can be more readily observed if metabolic rate (MR) is measured in the laboratory. I digitized figure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiological and biochemical zoology 2007-11, Vol.80 (6), p.643-651
1. Verfasser: Willis, Craig K. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 651
container_issue 6
container_start_page 643
container_title Physiological and biochemical zoology
container_volume 80
creator Willis, Craig K. R.
description Field studies of use of torpor by heterothermic endotherms suffer from the lack of a standardized threshold differentiating torpid body temperatures (T b) from normothermicT b's. This threshold can be more readily observed if metabolic rate (MR) is measured in the laboratory. I digitized figures from the literature that depicted simultaneous traces of MR andT bfrom 32 respirometry runs for 14 mammal species. For each graph, I quantified theT bmeasured when MR first began to drop at the onset of torpor (T b‐onset). I used a general linear model to quantify the effect of ambient temperature (T a) and body mass (BM) onT b‐onset. For species lighter than 70 g, the model was highly significant and was described by the equation \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $T_{\mathrm{b}\,- \mathrm{onset}\,}=( 0.055\pm 0.014) \mathrm{BM}\,+( 0.071\pm 0.031) T_{\mathrm{a}\,}+( 31.823\pm 0.740) $ \end{document} . To be conservative, I recommend use of these model parameters minus 1 standard error, which modifies the equation to \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $T_{\mathrm{b}\,- \mathrm{onset}\,}-1\,\mathrm{SE}\,=( 0.041) \mathrm{BM}\,+( 0.040) T_{\mathrm{a}\,}+31.083$ \end{document} . This approach provides a standardized threshold for differentiating torpor from normothermia that is based on use of energy, the actual currency of interest for studies of torpor in the wild. Few laboratory studies have presented the time‐course data required to quantifyT b‐onset, so more data are needed to validate
doi_str_mv 10.1086/521085
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_21027040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>10.1086/521085</jstor_id><sourcerecordid>10.1086/521085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-df05bfc3bad6e6885fe344549eb96a990794b9cad62862623c695d2b414432d63</originalsourceid><addsrcrecordid>eNqFkLlOxDAURS0EYhngD0AuEF3Ae-ISEJvEUjC0RE78MouSONiJ0HR8At_Il2A0I6bkFb5Pfke3OAgdUnJGSabOJYshN9AulTxNJNN883dnLGHx3UF7IcwJoTQjehvt0FRTEmcXvV20-LoFP1l8f35dmgAWXzq7wGNoOvCmHzzg8dRDmLra4gL6D4AWj53vnMemtfjJ-cb1U_DNzOAqfr40pq7xo2lihn20VcWAg1WO0OvN9fjqLnl4vr2_unhISiHTPrEVkUVV8sJYBSrLZAVcCCk0FFoZrUmqRaHLeGWZYorxUmlpWSGoEJxZxUfodNnbefc-QOjzZhZKqGvTghtCrjLOdSrYv2DUyFIiyBosvQvBQ5V3ftYYv8gpyX-V50vlETxeNQ5FA3aNrRxH4GQJDOV0VpqJ66LOkM_d4NvoZN1ztMTmoXf-r4YTKjOeCf4D-XKRXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21027040</pqid></control><display><type>article</type><title>An Energy‐Based Body Temperature Threshold between Torpor and Normothermia for Small Mammals</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><creator>Willis, Craig K. R.</creator><creatorcontrib>Willis, Craig K. R.</creatorcontrib><description>Field studies of use of torpor by heterothermic endotherms suffer from the lack of a standardized threshold differentiating torpid body temperatures (T b) from normothermicT b's. This threshold can be more readily observed if metabolic rate (MR) is measured in the laboratory. I digitized figures from the literature that depicted simultaneous traces of MR andT bfrom 32 respirometry runs for 14 mammal species. For each graph, I quantified theT bmeasured when MR first began to drop at the onset of torpor (T b‐onset). I used a general linear model to quantify the effect of ambient temperature (T a) and body mass (BM) onT b‐onset. For species lighter than 70 g, the model was highly significant and was described by the equation \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $T_{\mathrm{b}\,- \mathrm{onset}\,}=( 0.055\pm 0.014) \mathrm{BM}\,+( 0.071\pm 0.031) T_{\mathrm{a}\,}+( 31.823\pm 0.740) $ \end{document} . To be conservative, I recommend use of these model parameters minus 1 standard error, which modifies the equation to \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $T_{\mathrm{b}\,- \mathrm{onset}\,}-1\,\mathrm{SE}\,=( 0.041) \mathrm{BM}\,+( 0.040) T_{\mathrm{a}\,}+31.083$ \end{document} . This approach provides a standardized threshold for differentiating torpor from normothermia that is based on use of energy, the actual currency of interest for studies of torpor in the wild. Few laboratory studies have presented the time‐course data required to quantifyT b‐onset, so more data are needed to validate this relationship.</description><identifier>ISSN: 1522-2152</identifier><identifier>EISSN: 1537-5293</identifier><identifier>DOI: 10.1086/521085</identifier><identifier>PMID: 17910000</identifier><language>eng</language><publisher>United States: The University of Chicago Press</publisher><subject>Animal physiology ; Animal withers ; Animals ; Body Size - physiology ; Body Temperature Regulation - physiology ; Energy ; Energy Metabolism - physiology ; Experimentation ; Gaussian distributions ; Hibernation - physiology ; Mammals ; Mammals - physiology ; Metabolism ; Models, Biological ; Motor Activity - physiology ; Oxygen Consumption ; Thermogenesis ; Torpor</subject><ispartof>Physiological and biochemical zoology, 2007-11, Vol.80 (6), p.643-651</ispartof><rights>2007 by The University of Chicago. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-df05bfc3bad6e6885fe344549eb96a990794b9cad62862623c695d2b414432d63</citedby><cites>FETCH-LOGICAL-c457t-df05bfc3bad6e6885fe344549eb96a990794b9cad62862623c695d2b414432d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,801,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17910000$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Willis, Craig K. R.</creatorcontrib><title>An Energy‐Based Body Temperature Threshold between Torpor and Normothermia for Small Mammals</title><title>Physiological and biochemical zoology</title><addtitle>Physiol Biochem Zool</addtitle><description>Field studies of use of torpor by heterothermic endotherms suffer from the lack of a standardized threshold differentiating torpid body temperatures (T b) from normothermicT b's. This threshold can be more readily observed if metabolic rate (MR) is measured in the laboratory. I digitized figures from the literature that depicted simultaneous traces of MR andT bfrom 32 respirometry runs for 14 mammal species. For each graph, I quantified theT bmeasured when MR first began to drop at the onset of torpor (T b‐onset). I used a general linear model to quantify the effect of ambient temperature (T a) and body mass (BM) onT b‐onset. For species lighter than 70 g, the model was highly significant and was described by the equation \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $T_{\mathrm{b}\,- \mathrm{onset}\,}=( 0.055\pm 0.014) \mathrm{BM}\,+( 0.071\pm 0.031) T_{\mathrm{a}\,}+( 31.823\pm 0.740) $ \end{document} . To be conservative, I recommend use of these model parameters minus 1 standard error, which modifies the equation to \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $T_{\mathrm{b}\,- \mathrm{onset}\,}-1\,\mathrm{SE}\,=( 0.041) \mathrm{BM}\,+( 0.040) T_{\mathrm{a}\,}+31.083$ \end{document} . This approach provides a standardized threshold for differentiating torpor from normothermia that is based on use of energy, the actual currency of interest for studies of torpor in the wild. Few laboratory studies have presented the time‐course data required to quantifyT b‐onset, so more data are needed to validate this relationship.</description><subject>Animal physiology</subject><subject>Animal withers</subject><subject>Animals</subject><subject>Body Size - physiology</subject><subject>Body Temperature Regulation - physiology</subject><subject>Energy</subject><subject>Energy Metabolism - physiology</subject><subject>Experimentation</subject><subject>Gaussian distributions</subject><subject>Hibernation - physiology</subject><subject>Mammals</subject><subject>Mammals - physiology</subject><subject>Metabolism</subject><subject>Models, Biological</subject><subject>Motor Activity - physiology</subject><subject>Oxygen Consumption</subject><subject>Thermogenesis</subject><subject>Torpor</subject><issn>1522-2152</issn><issn>1537-5293</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkLlOxDAURS0EYhngD0AuEF3Ae-ISEJvEUjC0RE78MouSONiJ0HR8At_Il2A0I6bkFb5Pfke3OAgdUnJGSabOJYshN9AulTxNJNN883dnLGHx3UF7IcwJoTQjehvt0FRTEmcXvV20-LoFP1l8f35dmgAWXzq7wGNoOvCmHzzg8dRDmLra4gL6D4AWj53vnMemtfjJ-cb1U_DNzOAqfr40pq7xo2lihn20VcWAg1WO0OvN9fjqLnl4vr2_unhISiHTPrEVkUVV8sJYBSrLZAVcCCk0FFoZrUmqRaHLeGWZYorxUmlpWSGoEJxZxUfodNnbefc-QOjzZhZKqGvTghtCrjLOdSrYv2DUyFIiyBosvQvBQ5V3ftYYv8gpyX-V50vlETxeNQ5FA3aNrRxH4GQJDOV0VpqJ66LOkM_d4NvoZN1ztMTmoXf-r4YTKjOeCf4D-XKRXg</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Willis, Craig K. R.</creator><general>The University of Chicago Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20071101</creationdate><title>An Energy‐Based Body Temperature Threshold between Torpor and Normothermia for Small Mammals</title><author>Willis, Craig K. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-df05bfc3bad6e6885fe344549eb96a990794b9cad62862623c695d2b414432d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animal physiology</topic><topic>Animal withers</topic><topic>Animals</topic><topic>Body Size - physiology</topic><topic>Body Temperature Regulation - physiology</topic><topic>Energy</topic><topic>Energy Metabolism - physiology</topic><topic>Experimentation</topic><topic>Gaussian distributions</topic><topic>Hibernation - physiology</topic><topic>Mammals</topic><topic>Mammals - physiology</topic><topic>Metabolism</topic><topic>Models, Biological</topic><topic>Motor Activity - physiology</topic><topic>Oxygen Consumption</topic><topic>Thermogenesis</topic><topic>Torpor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Willis, Craig K. R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Physiological and biochemical zoology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Willis, Craig K. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Energy‐Based Body Temperature Threshold between Torpor and Normothermia for Small Mammals</atitle><jtitle>Physiological and biochemical zoology</jtitle><addtitle>Physiol Biochem Zool</addtitle><date>2007-11-01</date><risdate>2007</risdate><volume>80</volume><issue>6</issue><spage>643</spage><epage>651</epage><pages>643-651</pages><issn>1522-2152</issn><eissn>1537-5293</eissn><abstract>Field studies of use of torpor by heterothermic endotherms suffer from the lack of a standardized threshold differentiating torpid body temperatures (T b) from normothermicT b's. This threshold can be more readily observed if metabolic rate (MR) is measured in the laboratory. I digitized figures from the literature that depicted simultaneous traces of MR andT bfrom 32 respirometry runs for 14 mammal species. For each graph, I quantified theT bmeasured when MR first began to drop at the onset of torpor (T b‐onset). I used a general linear model to quantify the effect of ambient temperature (T a) and body mass (BM) onT b‐onset. For species lighter than 70 g, the model was highly significant and was described by the equation \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $T_{\mathrm{b}\,- \mathrm{onset}\,}=( 0.055\pm 0.014) \mathrm{BM}\,+( 0.071\pm 0.031) T_{\mathrm{a}\,}+( 31.823\pm 0.740) $ \end{document} . To be conservative, I recommend use of these model parameters minus 1 standard error, which modifies the equation to \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $T_{\mathrm{b}\,- \mathrm{onset}\,}-1\,\mathrm{SE}\,=( 0.041) \mathrm{BM}\,+( 0.040) T_{\mathrm{a}\,}+31.083$ \end{document} . This approach provides a standardized threshold for differentiating torpor from normothermia that is based on use of energy, the actual currency of interest for studies of torpor in the wild. Few laboratory studies have presented the time‐course data required to quantifyT b‐onset, so more data are needed to validate this relationship.</abstract><cop>United States</cop><pub>The University of Chicago Press</pub><pmid>17910000</pmid><doi>10.1086/521085</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1522-2152
ispartof Physiological and biochemical zoology, 2007-11, Vol.80 (6), p.643-651
issn 1522-2152
1537-5293
language eng
recordid cdi_proquest_miscellaneous_21027040
source MEDLINE; Jstor Complete Legacy
subjects Animal physiology
Animal withers
Animals
Body Size - physiology
Body Temperature Regulation - physiology
Energy
Energy Metabolism - physiology
Experimentation
Gaussian distributions
Hibernation - physiology
Mammals
Mammals - physiology
Metabolism
Models, Biological
Motor Activity - physiology
Oxygen Consumption
Thermogenesis
Torpor
title An Energy‐Based Body Temperature Threshold between Torpor and Normothermia for Small Mammals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A49%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Energy%E2%80%90Based%20Body%20Temperature%20Threshold%20between%20Torpor%20and%20Normothermia%20for%20Small%20Mammals&rft.jtitle=Physiological%20and%20biochemical%20zoology&rft.au=Willis,%20Craig%C2%A0K.%C2%A0R.&rft.date=2007-11-01&rft.volume=80&rft.issue=6&rft.spage=643&rft.epage=651&rft.pages=643-651&rft.issn=1522-2152&rft.eissn=1537-5293&rft_id=info:doi/10.1086/521085&rft_dat=%3Cjstor_proqu%3E10.1086/521085%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21027040&rft_id=info:pmid/17910000&rft_jstor_id=10.1086/521085&rfr_iscdi=true