An Energy‐Based Body Temperature Threshold between Torpor and Normothermia for Small Mammals

Field studies of use of torpor by heterothermic endotherms suffer from the lack of a standardized threshold differentiating torpid body temperatures (T b) from normothermicT b's. This threshold can be more readily observed if metabolic rate (MR) is measured in the laboratory. I digitized figure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiological and biochemical zoology 2007-11, Vol.80 (6), p.643-651
1. Verfasser: Willis, Craig K. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Field studies of use of torpor by heterothermic endotherms suffer from the lack of a standardized threshold differentiating torpid body temperatures (T b) from normothermicT b's. This threshold can be more readily observed if metabolic rate (MR) is measured in the laboratory. I digitized figures from the literature that depicted simultaneous traces of MR andT bfrom 32 respirometry runs for 14 mammal species. For each graph, I quantified theT bmeasured when MR first began to drop at the onset of torpor (T b‐onset). I used a general linear model to quantify the effect of ambient temperature (T a) and body mass (BM) onT b‐onset. For species lighter than 70 g, the model was highly significant and was described by the equation \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $T_{\mathrm{b}\,- \mathrm{onset}\,}=( 0.055\pm 0.014) \mathrm{BM}\,+( 0.071\pm 0.031) T_{\mathrm{a}\,}+( 31.823\pm 0.740) $ \end{document} . To be conservative, I recommend use of these model parameters minus 1 standard error, which modifies the equation to \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $T_{\mathrm{b}\,- \mathrm{onset}\,}-1\,\mathrm{SE}\,=( 0.041) \mathrm{BM}\,+( 0.040) T_{\mathrm{a}\,}+31.083$ \end{document} . This approach provides a standardized threshold for differentiating torpor from normothermia that is based on use of energy, the actual currency of interest for studies of torpor in the wild. Few laboratory studies have presented the time‐course data required to quantifyT b‐onset, so more data are needed to validate
ISSN:1522-2152
1537-5293
DOI:10.1086/521085