Observations on silt and sand transport in the throat section of the Frisian Inlet
The Frisian Inlet is one of the tidal basins of the Dutch Wadden Sea. In 1969, its basin area was reduced by 30%. As documented by bathymetric surveys, this has led to an import of sediment of 30×10 6 m 3 over the first 18 years. The study presented in this paper seeks to establish the mechanisms re...
Gespeichert in:
Veröffentlicht in: | Coastal engineering (Amsterdam) 2005-02, Vol.52 (2), p.159-175 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Frisian Inlet is one of the tidal basins of the Dutch Wadden Sea. In 1969, its basin area was reduced by 30%. As documented by bathymetric surveys, this has led to an import of sediment of 30×10
6 m
3 over the first 18 years. The study presented in this paper seeks to establish the mechanisms responsible for the passage of the sediment through the throat cross-section of the inlet channel. Emphasis is on a 14-day period of relative calm when sediment transport can be attributed solely to tidal currents. Use is made of continuous measurements of velocity, sand and silt concentration. The measurement station was located on one side of the throat cross-section in a water depth of approximately 6 m. For both the sand and silt fraction of the sediment, suspended load transport is the dominant transport mode. It is shown that for sand, concentration variations and net transport are determined by the local (in the throat section) velocity. Especially the residual velocity and tidal velocity asymmetry play an important role in the net sand flux. For silt, except for transport associated with locally generated vertical mixing, the net transport is largely determined by sedimentation–erosion processes in the basin and the silt concentration in the North Sea. Comparison with measurements in a station located in the middle of the throat section shows considerable difference in residual velocity and tidal velocity asymmetry. As a result, the sediment fluxes also differ. Accurately determining the net sediment flux in the throat section would require a dense net of measurement stations. |
---|---|
ISSN: | 0378-3839 1872-7379 |
DOI: | 10.1016/j.coastaleng.2004.10.002 |