Ice-rafted detritus events in the Arctic during the last glacial interval, and the timing of the Innuitian and Laurentide ice sheet calving events

Ice-rafted detritus (IRD) layers in the Arctic Ocean not only indicate the source of this detrital sediment, but give insights into the ice drift and ice sheet history. Detrital sand-sized Fe oxide mineral grains that are matched to precise sources using the microprobe chemical fingerprint of each g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polar research 2008, Vol.27 (2), p.114-127
Hauptverfasser: Darby, Dennis A., Zimmerman, Paula
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ice-rafted detritus (IRD) layers in the Arctic Ocean not only indicate the source of this detrital sediment, but give insights into the ice drift and ice sheet history. Detrital sand-sized Fe oxide mineral grains that are matched to precise sources using the microprobe chemical fingerprint of each grain, along with elevated coarse IRD abundance and radiocarbon ages, are used to define IRD peaks from the Innuitian and Arctic portions of the Laurentide ice sheets. Because grains from these two areas can be entrained by sea ice from the shelves just offshore of the calving areas, peaks in these grains must be correlated to coarse IRD to identify iceberg calving events, and to distinguish them from sea-ice rafting. The sequence of IRD peaks deposited by icebergs from these two ice sheets indicate that both ice sheets calved bergs at accelerated numbers, six or seven times, from 11 to 36 Kya. The relatively short times between most of these IRD events suggest that the ice sheets did not completely collapse with each IRD event, except the last event. Although there is some indication that one ice sheet may have begun calving bergs before the other, the resolution of the Arctic cores does not allow definitive determination of this. This emphasizes the need for higher resolution cores from the central Arctic, as well as from near the terminus of large Pleistocene ice sheets. Sea-ice rafting occurs throughout the last glacial stage, even during some glacial IRD events, as indicated by Fe grains from non-glacial sources.
ISSN:0800-0395
1751-8369
1751-8369
DOI:10.1111/j.1751-8369.2008.00057.x