Robust Waveform Design of Ultrasound Arrays for Medical Imaging

Sound speed is an effective parameter in designing an optimal beamformer. In conventional ultrasound imaging systems, the beamformer is designed assuming a fixed value of speed, whereas the speed in a tissue is not known precisely and also may fluctuate by a great value. The errors in estimating sou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultrasonic imaging 2018-11, Vol.40 (6), p.394-408
Hauptverfasser: Gholampour, Amir, Sakhaei, Sayed Mahmoud, Andargoli, Seyed Mehdi Hosseini
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sound speed is an effective parameter in designing an optimal beamformer. In conventional ultrasound imaging systems, the beamformer is designed assuming a fixed value of speed, whereas the speed in a tissue is not known precisely and also may fluctuate by a great value. The errors in estimating sound speed may lead to a severe degradation in the reconstructed image, as mainlobe width and sidelobe level of the beampattern are sensitive to the speed variations. In this paper, we consider the design of a transmit beamformer, which is robust to the speed variations. The problem is formulated as a convex optimization problem versus the covariance matrix of the excitation waveforms to obtain a beampattern with predefined mainlobe width and a minimum sidelobe level for all possible variations of speed. Then, by eigen-analysis of the obtained covariance matrix, a set of nonidentical single-carrier short-pulses for the excitation waveforms were designed. Various simulations indicate that the proposed method can yield a robust beampattern whose mainlobe width and sidelobe level almost remain constant by 10% speed variations. In contrast, the beampatterns obtained by nonrobust methods suffer extensive changes.
ISSN:0161-7346
1096-0910
DOI:10.1177/0161734618797578