miR-93-3p alleviates lipopolysaccharide-induced inflammation and apoptosis in H9c2 cardiomyocytes by inhibiting toll-like receptor 4
miR-93 is recently recognized to perform anti-inflammatory action in the pathological process of cardiomyocytes dysfunction. However, it remains unclear whether miR-93-3p involves in lipopolysaccharide (LPS)-induced inflammation and apoptosis in H9c2 cells. The present study aimed to investigate the...
Gespeichert in:
Veröffentlicht in: | Pathology, research and practice research and practice, 2018-10, Vol.214 (10), p.1686-1693 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | miR-93 is recently recognized to perform anti-inflammatory action in the pathological process of cardiomyocytes dysfunction. However, it remains unclear whether miR-93-3p involves in lipopolysaccharide (LPS)-induced inflammation and apoptosis in H9c2 cells. The present study aimed to investigate the functions of miR-93-3p and its target, toll-like receptor 4 (TLR4), in LPS-stimulated cardiomyocytes.
Cell viability was analyzed by CCK-8 assay. AnnexinV-FITC/PI staining and lactate dehydrogenase (LDH) assay were used to evaluate the cell death. The mRNA and protein levels were assayed by RT-qPCR and western blotting, respectively. The targeted gene was predicted by a bioinformatics algorithm and confirmed by a dual luciferase reporter assay.
LDH stimulation resulted in the suppression of cell viability and the increase in apoptosis rate, inflammatory cytokines and LDH levels, while inhibition of TLR4 with TAK-242 or overexpression of miR-93-3p dramatically blocked LPS-induced inflammation and apoptosis in cardiomyocytes. Intriguingly, bioinformatics analysis and experimental data suggested that TLR4 was a direct target of miR-93-3p, which could inhibit TLR4 expression by transfected with miR-93-3p mimics or elevate the expression of TLR4 by transfected with miR-93-3p inhibitors. Overexpression of TLR4 carried out an opposite effect to miR-93-3p and positively regulated LPS-induced inflammation and apoptosis in cardiomyocytes.
miR-93-3p showed the protective effects against LPS-induced inflammation and apoptosis in cardiomyocytes by inhibiting TLR4 expression. |
---|---|
ISSN: | 0344-0338 1618-0631 |
DOI: | 10.1016/j.prp.2018.08.024 |