A virtual laboratory for stability tests of rubble-mound breakwaters

The prediction of rubble-mound breakwater damage under wave action has usually relied on costly and time-consuming physical model tests. In this work, artificial neural networks (ANNs) are applied to estimate the outcome of a physical model throughout an experimental campaign comprising of 127 stabi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ocean engineering 2008-08, Vol.35 (11), p.1113-1120
Hauptverfasser: Iglesias, G., Rabuñal, J., Losada, M.A., Pachón, H., Castro, A., Carballo, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The prediction of rubble-mound breakwater damage under wave action has usually relied on costly and time-consuming physical model tests. In this work, artificial neural networks (ANNs) are applied to estimate the outcome of a physical model throughout an experimental campaign comprising of 127 stability tests. In order to choose the network best suited to the problem data, five different activation function options and 38 network architectures are compared. The good agreement found between the physical model and the neural network shows that an ANN may well serve as a virtual laboratory, reducing the number of physical model tests necessary for a project.
ISSN:0029-8018
1873-5258
DOI:10.1016/j.oceaneng.2008.04.014