Development of nanocomposite scaffolds based on biomineralization of N,O-carboxymethyl chitosan/fucoidan conjugates for bone tissue engineering
Bone tissue engineering holds great promise and clinical efficacy for the regeneration of bone defects. In this study, an amphoteric N,O-carboxymethyl chitosan (NOCC) and fucoidan (FD) were covalently cross-linked via an amidation reaction to synthesize NOCC/FD composite hydrogels. The hydrogels wer...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2018-12, Vol.120 (Pt B), p.2335-2345 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bone tissue engineering holds great promise and clinical efficacy for the regeneration of bone defects. In this study, an amphoteric N,O-carboxymethyl chitosan (NOCC) and fucoidan (FD) were covalently cross-linked via an amidation reaction to synthesize NOCC/FD composite hydrogels. The hydrogels were lyophilized and then three-dimensional scaffolds with interconnected macropores were obtained. To enhance the mechanical properties and osteogenic activity, the NOCC/FD scaffolds were biomineralized for the growth of hydroxyapatite crystals. A comparative assessment of the structures, morphologies, and physical properties of the original and mineralized scaffolds were performed by SEM, EDS, X-ray diffraction and FT-IR analysis. FD regulated the growth of hydroxyapatite nanocrystallites (n-HAp) and thus the NOCC/FD scaffolds showed better mineralization efficiency than NOCC scaffolds. The compressive strength of the scaffolds was greatly enhanced after mineralization with n-HAp. The n-HAp/NOCC/FD scaffolds enhanced the proliferation, ALP activity, and mineralization of osteoblast cells more strongly than the original and mineralized NOCC scaffolds. Hence, the n-HAp-mineralized NOCC/FD scaffolds may prove to be an excellent and versatile scaffold for bone tissue engineering.
[Display omitted] |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2018.08.179 |