Metal–Organic Framework Derived Spindle-like Carbon Incorporated α‑Fe2O3 Grown on Carbon Nanotube Fiber as Anodes for High-Performance Wearable Asymmetric Supercapacitors
Iron oxide (Fe2O3) has drawn much attention because of its high theoretical capacitance, wide operating potential window, low cost, natural abundance, and environmental friendliness. However, the inferior conductivity and insufficient ionic diffusion rate of a simple Fe2O3 electrode leading to the l...
Gespeichert in:
Veröffentlicht in: | ACS nano 2018-09, Vol.12 (9), p.9333-9341 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Iron oxide (Fe2O3) has drawn much attention because of its high theoretical capacitance, wide operating potential window, low cost, natural abundance, and environmental friendliness. However, the inferior conductivity and insufficient ionic diffusion rate of a simple Fe2O3 electrode leading to the low specific capacitance and poor rate performance of supercapacitors have impeded its applications. In this work, we report a facile and cost-effective method to directly grow MIL-88-Fe metal–organic framework (MOF) derived spindle-like α-Fe2O3@C on oxidized carbon nanotube fiber (S-α-Fe2O3@C/OCNTF). The S-α-Fe2O3@C/OCNTF electrode is demonstrated with a high areal capacitance of 1232.4 mF/cm2 at a current density of 2 mA/cm2 and considerable rate capability with capacitance retention of 63% at a current density of 20 mA/cm2 and is well matched with the cathode of the Na-doped MnO2 nanosheets on CNTF (Na-MnO2 NSs/CNTF). The electrochemical test results show that the S-α-Fe2O3@C/OCNTF//Na-MnO2 NSs/CNTF asymmetric supercapacitors possess a high specific capacitance of 201.3 mF/cm2 and an exceptional energy density of 135.3 μWh/cm2. Thus, MIL-88-Fe MOF derived S-α-Fe2O3@C will be a promising anode for applications in next-generation wearable asymmetric supercapacitors. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.8b04336 |