Removal of BTEX compounds by industrial sludge microbes in batch systems: statistical analysis of main and interaction effects

Biodegradation is an effective technique to remediate polluted soil and groundwater. In the present experimental study, a mixed microbial culture obtained from the wastewater treatment sludge of a chemical industry was used to degrade liquid phase benzene, toluene, ethyl benzene, and xylene (BTEX),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World journal of microbiology & biotechnology 2008, Vol.24 (1), p.73-78
Hauptverfasser: Jo, Mi-Seon, Rene, Eldon R, Kim, Soo-Hong, Park, Hung-Suck
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biodegradation is an effective technique to remediate polluted soil and groundwater. In the present experimental study, a mixed microbial culture obtained from the wastewater treatment sludge of a chemical industry was used to degrade liquid phase benzene, toluene, ethyl benzene, and xylene (BTEX), at individual initial concentrations varying between 15 and 75 mg/l. Experiments were conducted according to 2 k-¹ fractional factorial design at the low (15 mg/l) and high (75 mg/l) levels of BTEX concentrations, to identify the main and interaction effects of parameters and their influence on biodegradation of individual BTEX compounds in mixtures. The individual removals varied between 16% and 75% when the concentrations of B, T, E, and X were sufficiently low in the mixture. However, both synergistic (removal of ethyl benzene) and antagonistic (removal of benzene) behavior were noticed when the concentrations of toluene and xylene was increased to higher levels. The individual removals were greater than 67% at their center point levels. The total BTEX removal values were later statistically analyzed and based on the Fischer's variance ratio (F) and Probability values (P) it was observed that the main effects for total BTEX removal were significant than the squared and interaction effects.
ISSN:0959-3993
1573-0972
DOI:10.1007/s11274-007-9441-4