Finescale Diurnal Rainfall Statistics Refined from Eight Years of TRMM PR Data
The adequacy of hourly rainfall sampling was examined in terms of the detection of diurnal variations using 8 yr (1998–2005) of data observed by the precipitation radar on the Tropical Rainfall Measuring Mission (TRMM) satellite. It was found that the monthly and hourly rain samples for each 0.2° gr...
Gespeichert in:
Veröffentlicht in: | Journal of applied meteorology (1988) 2008-02, Vol.47 (2), p.544-561 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The adequacy of hourly rainfall sampling was examined in terms of the detection of diurnal variations using 8 yr (1998–2005) of data observed by the precipitation radar on the Tropical Rainfall Measuring Mission (TRMM) satellite. It was found that the monthly and hourly rain samples for each 0.2° grid point over the 8-yr period are composed of multiple precipitation systems. In this study, a “3-h-significant diurnal peak” was defined as the time of maximum rainfall with consecutive positive anomalies for more than 3 h. The fraction of the analyzed area with a 3-h-significant diurnal peak increased annually and accounted for 43% of the total global tropics at 0.2° resolution over the 8-yr period. The diurnal signature over Tibet and the Amazon showed a high degree of spatial uniformity (at >10° scale). The degree of similarity and locations of the regional diurnal characteristics are described in terms of seasonal variations and at multiple resolutions based on spatial uniformity. For example, uniform early-afternoon peaks generally appear over the coastal land and areas of high relief, whereas a seasonally invariant early-afternoon peak over the low-lying Amazon basin is recognized as a regional characteristic. In areas of coastal ocean, early-morning peaks appear in certain regions such as the area surrounding the so-called Maritime Continent and the area off the west coast of Mexico. These peaks are distinct from the global characteristics of late-morning rainfall maxima recorded over most coastal oceans and early-morning peaks recorded over open ocean. The results are also compared with those derived from TRMM Microwave Imager (TMI) data. In addition to obtaining a coherent signal, regional differences in the timing of maximum rainfall over the Tibetan Plateau were addressed; this discrepancy is attributed to limitations of the scattering algorithm used for TMI data in terms of detecting shallow convection and screening cold surfaces. |
---|---|
ISSN: | 1558-8424 0894-8763 1558-8432 1520-0450 |
DOI: | 10.1175/2007jamc1559.1 |