Rain versus Snow in the Sierra Nevada, California: Comparing Doppler Profiling Radar and Surface Observations of Melting Level
The maritime mountain ranges of western North America span a wide range of elevations and are extremely sensitive to flooding from warm winter storms, primarily because rain falls at higher elevations and over a much greater fraction of a basin’s contributing area than during a typical storm. Accura...
Gespeichert in:
Veröffentlicht in: | Journal of hydrometeorology 2008-04, Vol.9 (2), p.194-211 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The maritime mountain ranges of western North America span a wide range of elevations and are extremely sensitive to flooding from warm winter storms, primarily because rain falls at higher elevations and over a much greater fraction of a basin’s contributing area than during a typical storm. Accurate predictions of this rain–snow line are crucial to hydrologic forecasting. This study examines how remotely sensed atmospheric snow levels measured upstream of a mountain range (specifically, the bright band measured above radar wind profilers) can be used to accurately portray the altitude of the surface transition from snow to rain along the mountain’s windward slopes, focusing on measurements in the Sierra Nevada, California, from 2001 to 2005. Snow accumulation varies with respect to surface temperature, diurnal cycles in solar radiation, and fluctuations in the free-tropospheric melting level. At 1.5°C, 50% of precipitation events fall as rain and 50% as snow, and on average, 50% of measured precipitation contributes to increases in snow water equivalent (SWE). Between 2.5° and 3°C, snow is equally likely to melt or accumulate, with most cases resulting in no change to SWE. Qualitatively, brightband heights (BBHs) detected by 915-MHz profiling radars up to 300 km away from the American River study basin agree well with surface melting patterns. Quantitatively, this agreement can be improved by adjusting the melting elevation based on the spatial location of the profiler relative to the basin: BBHs decrease with increasing latitude and decreasing distance to the windward slope of the Sierra Nevada. Because of diurnal heating and cooling by radiation at the mountain surface, BBHs should also be adjusted to higher surface elevations near midday and lower elevations near midnight. |
---|---|
ISSN: | 1525-755X 1525-7541 |
DOI: | 10.1175/2007JHM853.1 |