Nitrogen cycling and metabolism in the thalweg of a prairie river

Nutrient dynamics in rivers are central to global biogeochemistry. We measured ammonium (NH4+) uptake, metabolism, nitrification, and denitrification in the thalweg, the river region of greatest flow, of the Kansas River (discharge = 14,360 L/s). We estimated gross and net uptake with a depleted 15N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. G. Biogeosciences 2008-12, Vol.113 (G4), p.n/a
Hauptverfasser: Dodds, W. K., Beaulieu, J. J., Eichmiller, J. J., Fischer, J. R., Franssen, N. R., Gudder, D. A., Makinster, A. S., McCarthy, M. J., Murdock, J. N., O'Brien, J. M., Tank, J. L., Sheibley, R. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nutrient dynamics in rivers are central to global biogeochemistry. We measured ammonium (NH4+) uptake, metabolism, nitrification, and denitrification in the thalweg, the river region of greatest flow, of the Kansas River (discharge = 14,360 L/s). We estimated gross and net uptake with a depleted 15N‐NH4+ release, metabolism with diel O2 measurements, and denitrification with dissolved N2 measurements. Net ecosystem production was negative. Net NH4+ uptake length was 2.1 km when concentrations were elevated, and gross uptake length was 1.9 km at ambient concentrations. Gross uptake rate measurements were comparable to estimates made using extrapolations from data obtained from streams (systems with 1/10th or less the discharge). Calculated lengths were maximal because the isotope pulse was primarily confined to the thalweg and not the shallow side channels or backwaters. Denitrification and nitrification rates were below detection. In the Kansas River, rates of N cycling are driven by heterotrophic processes, and considerable processing of N, particularly NH4+ uptake, occurred over a few kilometers of river length, with net uptake rates of NH4+ increasing with greater NH4+ concentrations.
ISSN:0148-0227
2156-2202
DOI:10.1029/2008JG000696