Antibacterial effect and biocompatibility of a novel nanostructured ZnO-coated gutta-percha cone for improved endodontic treatment
This work explored a novel approach to enhance the antibacterial activity of commercial Gutta-percha (GP) cones, the most commonly used core filling materials used in endodontic treatment. The reported procedure involved an argon (Ar) plasma treatment (PT) of the GP cone surface, followed by the dep...
Gespeichert in:
Veröffentlicht in: | Materials Science & Engineering C 2018-11, Vol.92, p.840-848 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work explored a novel approach to enhance the antibacterial activity of commercial Gutta-percha (GP) cones, the most commonly used core filling materials used in endodontic treatment. The reported procedure involved an argon (Ar) plasma treatment (PT) of the GP cone surface, followed by the deposition of a ZnO thin film by magnetron sputtering. The resulting surfaces were evaluated for surface topography, antibacterial activity against Enterococcus faecalis and Staphylococcus aureus, and cytocompatibility with human osteoblastic cells. GP cones treated with NaOCl, a routine chair-side protocol, were also tested as reference. The deposition of a ZnO film on pristine GP cones increased its antibacterial activity. Cones pre-treated with Ar-plasma (PT) and coated with the ZnO thin film presented significantly higher antibacterial activity than that observed on the pristine and, also, compared to the ZnO coated cones. The higher antibacterial activity of PT + ZnO cones appears related to the major effects induced by the PT pre-treatment on the cone surface endowing the deposited ZnO film with a homogeneous nanostructured topography that greatly improved surface reactivity. The modified GP cones maintained an appropriate cytocompatibility with human cells. This novel approach provides ready-to-use cones with enhanced antibacterial activity, improving a strict asepsis protocol during endodontic treatment and preventing secondary endodontic infections.
[Display omitted]
•Gutta-percha cones coated with a ZnO thin film present antibacterial activity.•Plasma pre-treatment enhances the antibacterial activity of the ZnO coating.•Modified gutta-percha points showed cytocompatibility to human cells.•Modified gutta-percha coating reinforces the asepsis protocol in endodontic treatment. |
---|---|
ISSN: | 0928-4931 1873-0191 |
DOI: | 10.1016/j.msec.2018.07.045 |