Tuning Lasing Emission toward Long Wavelengths in GaAs-(In,Al)GaAs Core–Multishell Nanowires

Semiconductor nanowire (NW) lasers are attractive as integrated on-chip coherent light sources with strong potential for applications in optical communication and sensing. Realizing lasers from individual bulk-type NWs with emission tunable from the near-infrared to the telecommunications spectral r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2018-10, Vol.18 (10), p.6292-6300
Hauptverfasser: Stettner, T, Thurn, A, Döblinger, M, Hill, M. O, Bissinger, J, Schmiedeke, P, Matich, S, Kostenbader, T, Ruhstorfer, D, Riedl, H, Kaniber, M, Lauhon, L. J, Finley, J. J, Koblmüller, G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Semiconductor nanowire (NW) lasers are attractive as integrated on-chip coherent light sources with strong potential for applications in optical communication and sensing. Realizing lasers from individual bulk-type NWs with emission tunable from the near-infrared to the telecommunications spectral region is, however, challenging and requires low-dimensional active gain regions with an adjustable band gap and quantum confinement. Here, we demonstrate lasing from GaAs-(InGaAs/AlGaAs) core–shell NWs with multiple InGaAs quantum wells (QW) and lasing wavelengths tunable from ∼0.8 to ∼1.1 μm. Our investigation emphasizes particularly the critical interplay between QW design, growth kinetics, and the control of InGaAs composition in the active region needed for effective tuning of the lasing wavelength. A low shell growth temperature and GaAs interlayers at the QW/barrier interfaces enable In molar fractions up to ∼25% without plastic strain relaxation or alloy intermixing in the QWs. Correlated scanning transmission electron microscopy, atom probe tomography, and confocal PL spectroscopy analyses illustrate the high sensitivity of the optically pumped lasing characteristics on microscopic properties, providing useful guidelines for other III–V-based NW laser systems.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.8b02503