Evaluation of different CHP options for refinery integration in the context of a low carbon future
This study presents a comparison of different concepts for delivering combined heat and power (CHP) to a refinery in Norway. A reference case of producing high pressure steam from natural gas in boilers and electricity in a combined cycle power plant, is compared to a: (1) natural gas fueled CHP wit...
Gespeichert in:
Veröffentlicht in: | International journal of greenhouse gas control 2009-03, Vol.3 (2), p.152-160 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study presents a comparison of different concepts for delivering combined heat and power (CHP) to a refinery in Norway. A reference case of producing high pressure steam from natural gas in boilers and electricity in a combined cycle power plant, is compared to a: (1) natural gas fueled CHP without any CO
2 capture; (2) hydrogen fueled CHP with hydrogen produced from steam methane reforming (SMR); (3) hydrogen fueled CHP with hydrogen produced from autothermal reforming (ATR); and finally (4) natural gas fueled CHP with postcombustion CO
2 removal. The options are compared on the basis of first law efficiency, emissions of CO
2 and a simplified cash flow evaluation. Results show that in terms of efficiency the standard natural gas fueled CHP performs better than the reference case as well as the options with carbon capture. The low carbon options in turn offer lower emissions of greenhouse gases while maintaining the same efficiency as the reference case. The cash flow analysis shows that for any option, a certain mix of prices is required to produce a positive cash flow. As expected, the relationship between natural gas price and electricity price affects all options. Also the value of heat and CO
2 emissions plays an important role. |
---|---|
ISSN: | 1750-5836 1878-0148 |
DOI: | 10.1016/j.ijggc.2008.07.008 |