Controlled release of thymol from zein based film

Active packaging materials, able to release antimicrobial compounds into foodstuffs, can be used in order to inhibit or slow down bacterial growth during storage. Zein-based mono and multilayer films were loaded with spelt bran and thymol (35% w/w) to obtain edible composite polymeric materials. Var...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Innovative food science & emerging technologies 2009-04, Vol.10 (2), p.222-227
Hauptverfasser: Mastromatteo, M., Barbuzzi, G., Conte, A., Del Nobile, M.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Active packaging materials, able to release antimicrobial compounds into foodstuffs, can be used in order to inhibit or slow down bacterial growth during storage. Zein-based mono and multilayer films were loaded with spelt bran and thymol (35% w/w) to obtain edible composite polymeric materials. Various composite systems were developed to control the release of thymol. In particular, the thickness of the layers and the biodegradable fibres amount were varied. Results highlight that thymol release rate decreased with the increase of the film thickness for both mono and multilayer films, without spelt bran addition. Conversely, a significant increase of thymol release rate with the increase of the bran concentration is recorded for both mono and multilayer films. In recent years, food safety is an important area of concern to the food industry. This fact requires packaging to be an integral part of the preservation concept. Consequently additional antimicrobial activity from the packaging material can aid in shelf life extension. The present work is focused on the development of controlled release systems based on zein incorporated with an active compound, thymol and natural fibres. Release rate of thymol from the developed mono and multilayer films, as affected by layers thickness and fibres amount, was evaluated.
ISSN:1466-8564
1878-5522
DOI:10.1016/j.ifset.2008.11.010