Water mass exchange and diapycnal mixing at Bussol’ Strait revealed by water mass properties
Intensive CTD observations that resolve the mean and tidal components were done with a total of 129 casts in summer of 2001 at Bussol’ Strait. Based on these data and all the available historical data, we have revealed the outflow from Bussol’ Strait to the Pacific and the significant diapycnal mixi...
Gespeichert in:
Veröffentlicht in: | Journal of oceanography 2007-04, Vol.63 (2), p.281-291 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Intensive CTD observations that resolve the mean and tidal components were done with a total of 129 casts in summer of 2001 at Bussol’ Strait. Based on these data and all the available historical data, we have revealed the outflow from Bussol’ Strait to the Pacific and the significant diapycnal mixing in the strait. In the range 27.0−27.3σθ, the water property in Bussol’ Strait is almost identical to that of the Kuril Basin Water (KBW). The KBW out of Bussol’ Strait forms a water mass front with the East Kamchatka Current Water (EKCW). This front also corresponds to the front of the Oyashio Current. In the lower part of the intermediate layer (27.3−27.6σθ), part of the water in the strait is characterized by lower temperature, lower salinity, and higher dissolved oxygen than that of KBW and EKCW, which can be explained only by the diapycnal mixing. The strong diapycnal mixing in the strait can also be shown by the density inversion, occurrence frequency of which corresponds well to the amplitude distribution of the diurnal current. In the density range 26.7−26.8σθ, the water in Bussol’ Strait has the lowest potential vorticity, suggesting that it is a source region of the low potential vorticity water. Seasonal change of the water can reach up to a density of 26.8σθ around Bussol’ Strait. This leads us to propose that the combination of winter convection and local tidal mixing leads to effective ventilation of the intermediate layer. |
---|---|
ISSN: | 0916-8370 1573-868X |
DOI: | 10.1007/s10872-007-0028-3 |