Rational design of metal organic framework-derived FeS2 hollow nanocages@reduced graphene oxide for K-ion storage
K-ion batteries (KIBs) have become one of the promising alternatives to lithium ion batteries. In this work, we are the first to utilize reduced graphene oxide (RGO) wrapped metal organic framework-derived FeS2 hollow nanocages (FeS2@RGO) as an anode for KIBs. Owing to the synergistic effect from Fe...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2018-01, Vol.10 (36), p.17092-17098 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | K-ion batteries (KIBs) have become one of the promising alternatives to lithium ion batteries. In this work, we are the first to utilize reduced graphene oxide (RGO) wrapped metal organic framework-derived FeS2 hollow nanocages (FeS2@RGO) as an anode for KIBs. Owing to the synergistic effect from FeS2 nanocages and RGO shells, our FeS2@RGO sample exhibited superior electrochemical performance. Such FeS2@RGO electrodes demonstrate a high capacity of 264 mA h g−1 after 50 cycles at 50 mA g−1 and 123 mA h g−1 after 420 cycles even at a large current density of 500 mA g−1. More importantly, we also explain the electrochemical reaction process about FeS2 and believe that these results would open the door for a novel class of long cycling performance anode materials in the KIB field. |
---|---|
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/c8nr05239e |