Photoexcited CRYPTOCHROME 1 Interacts Directly with G-Protein β Subunit AGB1 to Regulate the DNA-Binding Activity of HY5 and Photomorphogenesis in Arabidopsis

Light and the heterotrimeric G-protein are known to antagonistically regulate photomorphogenesis in Arabidopsis. However, whether light and G-protein coordinate the regulation of photomorphogenesis is largely unknown. Here we show that the blue light photoreceptor cryptochrome 1 (CRY1) physically in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular plant 2018-10, Vol.11 (10), p.1248-1263
Hauptverfasser: Lian, Hongli, Xu, Pengbo, He, Shengbo, Wu, Jun, Pan, Jian, Wang, Wenxiu, Xu, Feng, Wang, Sheng, Pan, Junsong, Huang, Jirong, Yang, Hong-Quan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Light and the heterotrimeric G-protein are known to antagonistically regulate photomorphogenesis in Arabidopsis. However, whether light and G-protein coordinate the regulation of photomorphogenesis is largely unknown. Here we show that the blue light photoreceptor cryptochrome 1 (CRY1) physically interacts with the G-protein β subunit, AGB1, in a blue light-dependent manner. We also show that AGB1 directly interacts with HY5, a basic leucine zipper transcriptional factor that acts as a critical positive regulator of photomorphogenesis, to inhibit its DNA-binding activity. Genetic studies suggest that CRY1 acts partially through AGB1, and AGB1 acts partially through HY5 to regulate photomorphogenesis. Moreover, we demonstrate that blue light-triggered interaction of CRY1 with AGB1 promotes the dissociation of HY5 from AGB1. Our results suggest that the CRY1 signaling mechanism involves positive regulation of the DNA-binding activity of HY5 mediated by the CRY1–AGB1 interaction, which inhibits the association of AGB1 with HY5. We propose that the antagonistic regulation of HY5 DNA-binding activity by CRY1 and AGB1 may allow plants to balance light and G-protein signaling and optimize photomorphogenesis. The blue light photoreceptor cryptochrome 1 (CRY1) interacts with the G-protein β subunit AGB1 in a blue light-dependent manner. AGB1 interacts with HY5 to inhibit its DNA-binding activity and photomorphogenesis. Blue light-triggered interaction of CRY1 with AGB1 promotes the dissociation of AGB1 from HY5, suggesting that light and G protein coordinate regulation of photomorphogenesis through the antagonistic regulation of HY5 DNA-binding activity
ISSN:1674-2052
1752-9867
DOI:10.1016/j.molp.2018.08.004