Mitochondrial calcium transport and the redox nature of the calcium-induced membrane permeability transition
Mitochondria possess a Ca2+ transport system composed of separate Ca2+ influx and efflux pathways. Intramitochondrial Ca2+ concentrations regulate oxidative phosphorylation, required for cell function and survival, and mitochondrial redox balance, that participates in a myriad of signaling and damag...
Gespeichert in:
Veröffentlicht in: | Free radical biology & medicine 2018-12, Vol.129, p.1-24 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mitochondria possess a Ca2+ transport system composed of separate Ca2+ influx and efflux pathways. Intramitochondrial Ca2+ concentrations regulate oxidative phosphorylation, required for cell function and survival, and mitochondrial redox balance, that participates in a myriad of signaling and damaging pathways. The interaction between Ca2+ accumulation and redox imbalance regulates opening and closing of a highly regulated inner membrane pore, the membrane permeability transition pore (PTP). In this review, we discuss the regulation of the PTP by mitochondrial oxidants, reactive nitrogen species, and the interactions between these species and other PTP inducers. In addition, we discuss the involvement of mitochondrial redox imbalance and PTP in metabolic conditions such as atherogenesis, diabetes, obesity and in mtDNA stability.
•Mitochondria possess Ca2+ influx and efflux pathways.•Mitochondrial Ca2+ regulates oxidative phosphorylation and redox balance.•Opening of mitochondrial permeability transition pore (PTP) is regulated by oxidants.•Mitochondrial Ca2+ accumulation and redox imbalance regulate PTP.•PTP is involved in metabolic disorders such as atherogenesis, diabetes, and obesity.
[Display omitted] |
---|---|
ISSN: | 0891-5849 1873-4596 |
DOI: | 10.1016/j.freeradbiomed.2018.08.034 |