Spring and aufeis (icing) hydrology in Brooks Range, Alaska

Remote sensing studies and field hydrometeorological and geophysical investigations were employed to characterize several aufeis fields in the Brooks Range, Alaska. Geochemical studies were undertaken together with field hydrological measurements to better understand the chemical and thermal propert...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research: Biogeosciences 2007-12, Vol.112 (G4), p.n/a
Hauptverfasser: Yoshikawa, Kenji, Hinzman, Larry D., Kane, Douglas L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Remote sensing studies and field hydrometeorological and geophysical investigations were employed to characterize several aufeis fields in the Brooks Range, Alaska. Geochemical studies were undertaken together with field hydrological measurements to better understand the chemical and thermal properties of stream base flow (groundwater spring) that contributes to winter aufeis development. The spring water temperature was measured at several major aufeis fields using data loggers throughout the year. Aufeis is an important water storage component in the Arctic and influences local ecology and geomorphology. Synthetic aperture radar (SAR) is a useful and sensitive sensor for aufeis detection and for estimating the total volume of storage as well as freeze/thaw conditions. The SAR analysis indicated that the volume of aufeis formed in winter is 27–30% of the annual groundwater discharge in the Kuparuk River. Visible and near‐IR satellite imagery indicated many of the high‐discharge springs (more than 10–1000 1/s) and aufeis fields are centered around an elevation of 600 m a.s.l. in limestone areas with glacial morphology. Geomorphological investigations indicate that many of springs have continually existed from at least the last glaciation. Microwave data (SAR), thermal infrared, short wave infrared, and visible and near‐IR bands were all used to observe the growth, decay, and distribution of aufeis deposits. The remotely sensed data indicate that the distribution of the aufeis deposits today is nearly the same as it was in past colder periods; this was mainly determined by mapping the distributed carbonate precipitates. Also, spring water temperatures and discharge volumes are predictable from the aufeis field size using remotely sensed techniques.
ISSN:0148-0227
2169-897X
2156-2202
2169-8996
DOI:10.1029/2006JG000294