Gemcitabine-loaded DSPE-PEG-PheoA liposome as a photomediated immune modulator for cholangiocarcinoma treatment

To improve the therapeutic efficacy of gemcitabine (GEM) as an anticancer drug for bile duct cancer, GEM-loaded liposomes (GDPPL) prepared from a photosensitizer-conjugated lipid were investigated regarding the drug release kinetics, photodynamic therapy (PDT) efficacy, and immunomodulatory effects....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2018-11, Vol.183, p.139-150
Hauptverfasser: Kim, Da Hye, Im, Byeong Nam, Hwang, Hee Sook, Na, Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To improve the therapeutic efficacy of gemcitabine (GEM) as an anticancer drug for bile duct cancer, GEM-loaded liposomes (GDPPL) prepared from a photosensitizer-conjugated lipid were investigated regarding the drug release kinetics, photodynamic therapy (PDT) efficacy, and immunomodulatory effects. The release rate of GEM from the liposomes was improved approximately 2-fold compared to non-laser irradiation groups due to lipid disruption by reactive oxygen species produced from the activated photosensitizer upon laser irradiation. Through in vitro testing using a human liver bile duct carcinoma cell line (HuCCT-1), the cytotoxicity of GDPPL with laser irradiation was enhanced due to rapid GEM release and PDT effects. Furthermore, the results of in vivo tests using a HuCCT-1 tumor-bearing xenograft mice model showed that GDPPL exhibited approximately 3-fold antitumoral effects compared to control group. Additionally, immunohistochemical analysis demonstrated the recruitment of immunostimulatory cells in tumor tissues. IHC tests in BALB/c mice indicated that GDPPL under laser irradiation dramatically enhanced the quantities of various immune cells for effective antitumoral immunotherapy against biliary tract cancer. From these results, it was concluded that GDPPL with rapid drug release behavior, PDT efficacy, and immunomodulatory effects upon laser irradiation has potential as an antitumor therapeutic agent for biliary tract cancer. [Display omitted]
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2018.08.052