Two-Dimensional Electronic Spectroscopy of the B800-B820 Light-Harvesting Complex

Emerging nonlinear optical spectroscopies enable deeper insight into the intricate world of interactions and dynamics of complex molecular systems. 2D electronic spectroscopy appears to be especially well suited for studying multichromophoric complexes such as light-harvesting complexes of photosynt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2006-08, Vol.103 (34), p.12672-12677
Hauptverfasser: Zigmantas, Donatas, Read, Elizabeth L., Mančal, Tomáš, Brixner, Tobias, Gardiner, Alastair T., Cogdell, Richard J., Fleming, Graham R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Emerging nonlinear optical spectroscopies enable deeper insight into the intricate world of interactions and dynamics of complex molecular systems. 2D electronic spectroscopy appears to be especially well suited for studying multichromophoric complexes such as light-harvesting complexes of photosynthetic organisms as it allows direct observation of couplings between the pigments and charts dynamics of energy flow on a 2D frequency map. Here, we demonstrate that a single 2D experiment combined with self-consistent theoretical modeling can determine spectroscopic parameters dictating excitation energy dynamics in the bacterial B800-B820 light-harvesting complex, which contains 27 bacteriochlorophyll molecules. Ultrafast sub-50-fs dynamics dominated by coherent intraband processes and population transfer dynamics on a picosecond time scale were measured and modeled with one consistent set of parameters. Theoretical 2D spectra were calculated by using a Frenkel exciton model and modified Förster/ Redfield theory for the calculation of dynamics. They match the main features of experimental spectra at all population times well, implying that the energy level structure and transition dipole strengths are modeled correctly in addition to the energy transfer dynamics of the system.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0602961103