Modeling the distribution of diffuse nitrogen sources and sinks in the Neuse River Basin of North Carolina, USA

This study quantified nonpoint source nitrogen (NPS-N) sources and sinks across the 14,582 km2 Neuse River Basin (NRB) located in North Carolina, to provide tabular data summaries and graphic overlay products to support the development of management approaches to best achieve established N reduction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Water Resources Association 2005-10, Vol.41 (5), p.1129-1147
Hauptverfasser: Lunetta, R.S, Greene, R.G, Lyon, J.G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study quantified nonpoint source nitrogen (NPS-N) sources and sinks across the 14,582 km2 Neuse River Basin (NRB) located in North Carolina, to provide tabular data summaries and graphic overlay products to support the development of management approaches to best achieve established N reduction goals. First, a remote sensor derived, land cover classification was performed to support modeling needs. Modeling efforts included the development of a mass balance model to quantify potential N sources and sinks, followed by a precipitation event driven hydrologic model to effectively transport excess N across the landscape to individual stream reaches to support subsequent labeling of transported N values corresponding to source origin. Results indicated that agricultural land contributed 55 percent of the total annual NPS-N loadings, followed by forested land at 23 percent (background), and urban areas at 21 percent. Average annual N source contributions were quantified for agricultural (1.4 kg/ha), urban (1.2 kg/ha), and forested cover types (0.5 kg/ha). Nonpoint source N contributions were greatest during the winter (40 percent), followed by spring (32 percent), summer (28 percent), and fall (0.3 percent). Seasonal total N loadings shifted from urban dominated and forest dominated sources during the winter, to agricultural sources in the spring and summer. A quantitative assessment of the significant NRB land use activities indicated that high (greater than 70 percent impervious) and medium (greater than 35 percent impervious) density urban development were the greatest contributors of NPS-N on a unit area basis (1.9 and 1.6 kg/ha/yr, respectively), followed by row crops and pasture/hay cover types (1.4 kg/ha/yr).
ISSN:1093-474X
1752-1688
DOI:10.1111/j.1752-1688.2005.tb03789.x