Highly Sensitive, Temperature-Independent Oxygen Gas Sensor Based on Anatase TiO2 Nanoparticle Grafted, 2D Mixed Valent VO x Nanoflakelets

Herein, we report a facile approach for the synthesis of TiO2 nanoparticles tethered on 2D mixed valent vanadium oxide (VO x /TiO2) nanoflakelets using a thermal decomposition assisted hydrothermal method and investigation of its temperature-independent performance enhancement in oxygen-sensing prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sensors 2018-09, Vol.3 (9), p.1811-1821
Hauptverfasser: Raghu, Appu Vengattoor, Karuppanan, Karthikeyan K, Pullithadathil, Biji
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1821
container_issue 9
container_start_page 1811
container_title ACS sensors
container_volume 3
creator Raghu, Appu Vengattoor
Karuppanan, Karthikeyan K
Pullithadathil, Biji
description Herein, we report a facile approach for the synthesis of TiO2 nanoparticles tethered on 2D mixed valent vanadium oxide (VO x /TiO2) nanoflakelets using a thermal decomposition assisted hydrothermal method and investigation of its temperature-independent performance enhancement in oxygen-sensing properties. The material was structurally characterized using XRD, TEM, Raman, DSC, and XPS analysis. The presence of mixed valent states, such as V2O5 and VO2 in VO x , and the metastable properties of VO2 have been found to play crucial roles in the temperature-independent electrical conductivity of VO x /TiO2 nanoflakelets. Though pristine VO x exhibited characteristic semiconductor-to-metal transition of monoclinic VO2, pure VO x nanoflakelets exhibited poor sensitivity toward sensing oxygen. VO x /TiO2 nanoflakelets showed a very low temperature coefficient of resistance above 150 °C with improved sensitivity (35 times higher than VO x for 100 ppm) toward oxygen gas. VO x /TiO2 nanoflakelets exhibited much higher response, faster adsorption and desorption toward oxygen as compared to pristine VO x beyond 100 °C, which endowed the sensor with excellent temperature-independent sensor properties within 150–500 °C. The faster adsorption and desorption after 100 °C led to shorter response time (3–5 s) and recovery time (7–9 s). The results suggest that 2D VO x /TiO2 can be a promising candidate for temperature-independent oxygen sensor applications.
doi_str_mv 10.1021/acssensors.8b00544
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2097593496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2097593496</sourcerecordid><originalsourceid>FETCH-LOGICAL-a726-de7d9b5faf8486ee701968fe276e78f79ae732ed7234e5d12fabb74e352c06733</originalsourceid><addsrcrecordid>eNpNkEFPwjAYhhujiQT5A5569MCwa7d2PSIqkKA7uHBduu0rDkc3187AX_BXO5BEL9_7Hp68-fIgdOuTiU-of69ya8HYurWTKCMkDIILNKBMSI9xGVz-69doZO2WEOKHnIYRGaDvRbl5rw74rR8oXfkFY5zAroFWua4Fb2kKaKA_xuF4f9iAwXNlT3Td4gdlocC1wVOjXN9xUsYUvypTN6p1ZV4BnrdKOyjGmD7il3Lf42tVHdfWMd6fUF2pD6jA2Rt0pVVlYXTOIUqen5LZwlvF8-VsuvKUoNwrQBQyC7XSURBxAEF8ySMNVHAQkRZSgWAUCkFZAGHhU62yTATAQpoTLhgborvf2aatPzuwLt2VNoeqUgbqzqaUSBFKFkjeo5NftDecbuuuNf1fqU_So_b0T3t61s5-AEGjeZ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2097593496</pqid></control><display><type>article</type><title>Highly Sensitive, Temperature-Independent Oxygen Gas Sensor Based on Anatase TiO2 Nanoparticle Grafted, 2D Mixed Valent VO x Nanoflakelets</title><source>American Chemical Society Journals</source><creator>Raghu, Appu Vengattoor ; Karuppanan, Karthikeyan K ; Pullithadathil, Biji</creator><creatorcontrib>Raghu, Appu Vengattoor ; Karuppanan, Karthikeyan K ; Pullithadathil, Biji</creatorcontrib><description>Herein, we report a facile approach for the synthesis of TiO2 nanoparticles tethered on 2D mixed valent vanadium oxide (VO x /TiO2) nanoflakelets using a thermal decomposition assisted hydrothermal method and investigation of its temperature-independent performance enhancement in oxygen-sensing properties. The material was structurally characterized using XRD, TEM, Raman, DSC, and XPS analysis. The presence of mixed valent states, such as V2O5 and VO2 in VO x , and the metastable properties of VO2 have been found to play crucial roles in the temperature-independent electrical conductivity of VO x /TiO2 nanoflakelets. Though pristine VO x exhibited characteristic semiconductor-to-metal transition of monoclinic VO2, pure VO x nanoflakelets exhibited poor sensitivity toward sensing oxygen. VO x /TiO2 nanoflakelets showed a very low temperature coefficient of resistance above 150 °C with improved sensitivity (35 times higher than VO x for 100 ppm) toward oxygen gas. VO x /TiO2 nanoflakelets exhibited much higher response, faster adsorption and desorption toward oxygen as compared to pristine VO x beyond 100 °C, which endowed the sensor with excellent temperature-independent sensor properties within 150–500 °C. The faster adsorption and desorption after 100 °C led to shorter response time (3–5 s) and recovery time (7–9 s). The results suggest that 2D VO x /TiO2 can be a promising candidate for temperature-independent oxygen sensor applications.</description><identifier>ISSN: 2379-3694</identifier><identifier>EISSN: 2379-3694</identifier><identifier>DOI: 10.1021/acssensors.8b00544</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS sensors, 2018-09, Vol.3 (9), p.1811-1821</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5211-7986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssensors.8b00544$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssensors.8b00544$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,27083,27931,27932,56745,56795</link.rule.ids></links><search><creatorcontrib>Raghu, Appu Vengattoor</creatorcontrib><creatorcontrib>Karuppanan, Karthikeyan K</creatorcontrib><creatorcontrib>Pullithadathil, Biji</creatorcontrib><title>Highly Sensitive, Temperature-Independent Oxygen Gas Sensor Based on Anatase TiO2 Nanoparticle Grafted, 2D Mixed Valent VO x Nanoflakelets</title><title>ACS sensors</title><addtitle>ACS Sens</addtitle><description>Herein, we report a facile approach for the synthesis of TiO2 nanoparticles tethered on 2D mixed valent vanadium oxide (VO x /TiO2) nanoflakelets using a thermal decomposition assisted hydrothermal method and investigation of its temperature-independent performance enhancement in oxygen-sensing properties. The material was structurally characterized using XRD, TEM, Raman, DSC, and XPS analysis. The presence of mixed valent states, such as V2O5 and VO2 in VO x , and the metastable properties of VO2 have been found to play crucial roles in the temperature-independent electrical conductivity of VO x /TiO2 nanoflakelets. Though pristine VO x exhibited characteristic semiconductor-to-metal transition of monoclinic VO2, pure VO x nanoflakelets exhibited poor sensitivity toward sensing oxygen. VO x /TiO2 nanoflakelets showed a very low temperature coefficient of resistance above 150 °C with improved sensitivity (35 times higher than VO x for 100 ppm) toward oxygen gas. VO x /TiO2 nanoflakelets exhibited much higher response, faster adsorption and desorption toward oxygen as compared to pristine VO x beyond 100 °C, which endowed the sensor with excellent temperature-independent sensor properties within 150–500 °C. The faster adsorption and desorption after 100 °C led to shorter response time (3–5 s) and recovery time (7–9 s). The results suggest that 2D VO x /TiO2 can be a promising candidate for temperature-independent oxygen sensor applications.</description><issn>2379-3694</issn><issn>2379-3694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkEFPwjAYhhujiQT5A5569MCwa7d2PSIqkKA7uHBduu0rDkc3187AX_BXO5BEL9_7Hp68-fIgdOuTiU-of69ya8HYurWTKCMkDIILNKBMSI9xGVz-69doZO2WEOKHnIYRGaDvRbl5rw74rR8oXfkFY5zAroFWua4Fb2kKaKA_xuF4f9iAwXNlT3Td4gdlocC1wVOjXN9xUsYUvypTN6p1ZV4BnrdKOyjGmD7il3Lf42tVHdfWMd6fUF2pD6jA2Rt0pVVlYXTOIUqen5LZwlvF8-VsuvKUoNwrQBQyC7XSURBxAEF8ySMNVHAQkRZSgWAUCkFZAGHhU62yTATAQpoTLhgborvf2aatPzuwLt2VNoeqUgbqzqaUSBFKFkjeo5NftDecbuuuNf1fqU_So_b0T3t61s5-AEGjeZ0</recordid><startdate>20180928</startdate><enddate>20180928</enddate><creator>Raghu, Appu Vengattoor</creator><creator>Karuppanan, Karthikeyan K</creator><creator>Pullithadathil, Biji</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5211-7986</orcidid></search><sort><creationdate>20180928</creationdate><title>Highly Sensitive, Temperature-Independent Oxygen Gas Sensor Based on Anatase TiO2 Nanoparticle Grafted, 2D Mixed Valent VO x Nanoflakelets</title><author>Raghu, Appu Vengattoor ; Karuppanan, Karthikeyan K ; Pullithadathil, Biji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a726-de7d9b5faf8486ee701968fe276e78f79ae732ed7234e5d12fabb74e352c06733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raghu, Appu Vengattoor</creatorcontrib><creatorcontrib>Karuppanan, Karthikeyan K</creatorcontrib><creatorcontrib>Pullithadathil, Biji</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raghu, Appu Vengattoor</au><au>Karuppanan, Karthikeyan K</au><au>Pullithadathil, Biji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Sensitive, Temperature-Independent Oxygen Gas Sensor Based on Anatase TiO2 Nanoparticle Grafted, 2D Mixed Valent VO x Nanoflakelets</atitle><jtitle>ACS sensors</jtitle><addtitle>ACS Sens</addtitle><date>2018-09-28</date><risdate>2018</risdate><volume>3</volume><issue>9</issue><spage>1811</spage><epage>1821</epage><pages>1811-1821</pages><issn>2379-3694</issn><eissn>2379-3694</eissn><abstract>Herein, we report a facile approach for the synthesis of TiO2 nanoparticles tethered on 2D mixed valent vanadium oxide (VO x /TiO2) nanoflakelets using a thermal decomposition assisted hydrothermal method and investigation of its temperature-independent performance enhancement in oxygen-sensing properties. The material was structurally characterized using XRD, TEM, Raman, DSC, and XPS analysis. The presence of mixed valent states, such as V2O5 and VO2 in VO x , and the metastable properties of VO2 have been found to play crucial roles in the temperature-independent electrical conductivity of VO x /TiO2 nanoflakelets. Though pristine VO x exhibited characteristic semiconductor-to-metal transition of monoclinic VO2, pure VO x nanoflakelets exhibited poor sensitivity toward sensing oxygen. VO x /TiO2 nanoflakelets showed a very low temperature coefficient of resistance above 150 °C with improved sensitivity (35 times higher than VO x for 100 ppm) toward oxygen gas. VO x /TiO2 nanoflakelets exhibited much higher response, faster adsorption and desorption toward oxygen as compared to pristine VO x beyond 100 °C, which endowed the sensor with excellent temperature-independent sensor properties within 150–500 °C. The faster adsorption and desorption after 100 °C led to shorter response time (3–5 s) and recovery time (7–9 s). The results suggest that 2D VO x /TiO2 can be a promising candidate for temperature-independent oxygen sensor applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssensors.8b00544</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5211-7986</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2379-3694
ispartof ACS sensors, 2018-09, Vol.3 (9), p.1811-1821
issn 2379-3694
2379-3694
language eng
recordid cdi_proquest_miscellaneous_2097593496
source American Chemical Society Journals
title Highly Sensitive, Temperature-Independent Oxygen Gas Sensor Based on Anatase TiO2 Nanoparticle Grafted, 2D Mixed Valent VO x Nanoflakelets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T11%3A52%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Sensitive,%20Temperature-Independent%20Oxygen%20Gas%20Sensor%20Based%20on%20Anatase%20TiO2%20Nanoparticle%20Grafted,%202D%20Mixed%20Valent%20VO%20x%20Nanoflakelets&rft.jtitle=ACS%20sensors&rft.au=Raghu,%20Appu%20Vengattoor&rft.date=2018-09-28&rft.volume=3&rft.issue=9&rft.spage=1811&rft.epage=1821&rft.pages=1811-1821&rft.issn=2379-3694&rft.eissn=2379-3694&rft_id=info:doi/10.1021/acssensors.8b00544&rft_dat=%3Cproquest_acs_j%3E2097593496%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2097593496&rft_id=info:pmid/&rfr_iscdi=true