Micro/nanostructured inhalable formulation based on polysaccharides: Effect of a thermoprotectant on powder properties and protein integrity

[Display omitted] Combined micro- and nanosystems are appealing for pulmonary protein delivery, fulfilling the specific physiological requirements for efficient outcomes in-vivo. However, fabrication of protein formulations may impose stresses perturbing protein conformational stability and, hence,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2018-11, Vol.551 (1-2), p.23-33
Hauptverfasser: Al-Qadi, Sonia, Taboada, Pablo, Remuñán-López, Carmen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Combined micro- and nanosystems are appealing for pulmonary protein delivery, fulfilling the specific physiological requirements for efficient outcomes in-vivo. However, fabrication of protein formulations may impose stresses perturbing protein conformational stability and, hence, biological activity. Herein, a protein, insulin (INS), was nanoencapsulated inside chitosan nanoparticles (CS NPs) by ionic gelation. By spray drying, the resultant protein-loaded NPs were further encapsulated with a thermoprotectant into powders bearing adequate aerodynamic properties for lung delivery. Structural modifications and interactions of the protein/carrier system were investigated following processing, with special emphasis on protein integrity. Accordingly, physicochemical, elemental, structural and thermal experiments were performed. The analyses revealed the localization of a proportion of the protein on the NPs’ surface following nanoencapsulation, and the involved molecular interactions between the NPs and thermoprotectant after microencapsulation. Protein integrity was conserved throughout the preparation processes. This highlights the non-invasiveness of the fabrication techniques, particularly spray drying, for preparing micro-nanosystems for effective administration of inhalable macromolecules.
ISSN:0378-5173
1873-3476
DOI:10.1016/j.ijpharm.2018.08.049