(OP 8) A Novel Ex vivo Platform to Develop Fetoscopic Closure Techniques for Punctured Fetal Membranes
Endoscopic fetal surgery may be a live-saving option to correct anomalies. However, operative interventions into the uterine cavity carry a high risk for postoperative preterm premature rupture of the fetal membranes (PPROM). Indeed, iatrogenic PPROM (iPPROM) presents a bottleneck for fetoscopic sur...
Gespeichert in:
Veröffentlicht in: | Tissue engineering. Part A 2008-05, Vol.14 (5), p.697-697 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Endoscopic fetal surgery may be a live-saving option to correct anomalies. However, operative interventions into the uterine cavity carry a high risk for postoperative preterm premature rupture of the fetal membranes (PPROM). Indeed, iatrogenic PPROM (iPPROM) presents a bottleneck for fetoscopic surgery. Prophylactic plugging of fetoscopic entry sites with tissue sealants, optimization of the needle penetration procedure, needle geometry and puncture location in the fetal membranes potentially could prevent iPPROM. To explore such routes, ex vivo model systems are necessary. Here we introduce a new dynamic test device that permits to develop and study fetoscopic closure techniques on experimentally wounded fetal membranes ex vivo. We created a mechanical inflation device that permits to deform fetal membranes under fluid pressure till rupture, monitored by a CCD camera. For the characterization of the mechanical properties of the fetal membrane, the inverse finite element procedure and the optimization procedure will be used. Mechanical tests and treatment tests, e.g. plugging of fetal membrane wounds with glues, are performed in the aqueous milieu and the physiological loading conditions of fetal membranes membranes inside the uterus. The validation of this new experimental platform is ongoing: First rounds of biomechanical testing have been performed in order to understand the fracture behavior of healthy or fetoscopically punctured fetal membranes. |
---|---|
ISSN: | 1937-3341 1937-335X |