Dietary energy level affects adipose depot mass but does not impair in vitro subcutaneous adipose tissue response to short-term insulin and tumor necrosis factor-α challenge in nonlactating, nonpregnant Holstein cows
We assessed effects of overfeeding energy to nonlactating and nonpregnant Holstein cows during a length of time similar to a typical dry period on body lipid storage and the abundance of genes related to insulin signaling, inflammation, and ubiquitination in subcutaneous adipose tissue (SAT) in vitr...
Gespeichert in:
Veröffentlicht in: | Journal of dairy science 2018-11, Vol.101 (11), p.10206-10219 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We assessed effects of overfeeding energy to nonlactating and nonpregnant Holstein cows during a length of time similar to a typical dry period on body lipid storage and the abundance of genes related to insulin signaling, inflammation, and ubiquitination in subcutaneous adipose tissue (SAT) in vitro challenged with insulin and recombinant bovine tumor necrosis factor-α. Fourteen cows were randomly assigned to either a high-energy (OVE; net energy for lactation = 1.60 Mcal/kg of dry matter; n = 7) or control (CON; net energy for lactation = 1.30 Mcal/kg of dry matter; n = 7) diet for 6 wk. Immediately after slaughter, liver, kidneys, and mammary gland were separated and weighed. The adipose tissue mass in the omental, mesenteric, and perirenal depots was dissected and weighed. Subcutaneous adipose tissue was collected from the tail-head region and was used as follows: control, bovine insulin (INS) at 1 µmol/L, tumor necrosis factor-α at 5 ng/mL (TNF), and their combination. Despite a lack of difference in final body condition score, OVE cows had greater energy intake and were heavier than CON cows. Furthermore, overfeeding led to greater mass of mesenteric and perirenal adipose, liver, and mammary gland. Overall, SAT incubated with INS had an upregulation of insulin receptor (INSR), interleukin-10 (IL10), small ubiquitin-like modifier 3 (SUMO3), and ubiquitin conjugating enzyme E2I (UBC9), whereas TNF upregulated peroxisome proliferator-activated receptor gamma (PPARG), diacylglycerol O-acyltransferase 2 (DGAT2), interleukin-6 (IL6), nuclear factor kappa B subunit 1 (NFKB1), small ubiquitin-like modifier 2 (SUMO2), and UBC9. Regardless of in vitro treatment, feeding OVE upregulated PPARG, fatty acid synthase (FASN), and insulin induced gene 1 (INSIG1). Abundance of PPARG was greater in SAT of OVE cows cultured individually with INS and TNF. The interaction between diet and in vitro treatment revealed that sterol regulatory element binding transcription factor 1 (SREBF1) had greater abundance in SAT from the CON group in response to culture with INS, whereas SAT from OVE cows had greater SREBF1 abundance in response to culture with TNF. The mRNA abundance of IL6 and NFKB1 was greater in response to TNF treatment and overall in CON cows. Furthermore, SAT from these cows had greater IL10 abundance when cultured with INS and TNF. Overall, data highlighted that overfeeding energy increases adipose tissue mass in part by stimulating transcription of key genes as |
---|---|
ISSN: | 0022-0302 1525-3198 |
DOI: | 10.3168/jds.2018-14389 |