Data Harmonization for a Molecularly Driven Health System

Data commons have emerged as the best current method for enabling data aggregation across multiple projects and multiple data sources. Good data harmonization techniques are critical to maintain quality of data within a data commons, as well as to allow future meta-analysis across different data com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2018-08, Vol.174 (5), p.1045-1048
Hauptverfasser: Lee, Jerry Ssu-Hsien, Kibbe, Warren Alden, Grossman, Robert Lee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Data commons have emerged as the best current method for enabling data aggregation across multiple projects and multiple data sources. Good data harmonization techniques are critical to maintain quality of data within a data commons, as well as to allow future meta-analysis across different data commons. We present some of the current best practices for data harmonization. Data commons have emerged as the best current method for enabling data aggregation across multiple projects and multiple data sources. Good data harmonization techniques are critical to maintain quality of data within a data commons, as well as to allow future meta-analysis across different data commons. We present some of the current best practices for data harmonization.
ISSN:0092-8674
1097-4172
DOI:10.1016/j.cell.2018.08.012