Nanoparticle Delivery of miRNA-21 Mimic to Cardiac Macrophages Improves Myocardial Remodeling after Myocardial Infarction

MicroRNA-based therapy that targets cardiac macrophages holds great potential for treatment of myocardial infarction (MI). Here, we explored whether boosting the miRNA-21 transcript level in macrophage-enriched areas of the infarcted heart could switch their phenotype from pro-inflammatory to repara...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2018-09, Vol.18 (9), p.5885-5891
Hauptverfasser: Bejerano, Tzlil, Etzion, Sharon, Elyagon, Sigal, Etzion, Yoram, Cohen, Smadar
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:MicroRNA-based therapy that targets cardiac macrophages holds great potential for treatment of myocardial infarction (MI). Here, we explored whether boosting the miRNA-21 transcript level in macrophage-enriched areas of the infarcted heart could switch their phenotype from pro-inflammatory to reparative, thus promoting resolution of inflammation and improving cardiac healing. We employed laser capture microdissection (LCM) to spatially monitor the response to this treatment in the macrophage-enriched zones. MiRNA-21 mimic was delivered to cardiac macrophages post MI by nanoparticles (NPs), spontaneously assembled due to the complexation of hyaluronan-sulfate with the nucleic acid mediated by calcium ion bridges, yielding slightly anionic NPs with a mean diameter of 130 nm. Following intravenous administration, the miRNA-21 NPs were targeted to cardiac macrophages at the infarct zone, elicited their phenotype switch from pro-inflammatory to reparative, promoted angiogenesis, and reduced hypertrophy, fibrosis and cell apoptosis in the remote myocardium. Our work thus presents a new therapeutic strategy to manipulate macrophage phenotype using nanoparticle delivery of miRNA-21 with a potential for use to attenuate post-MI remodeling and heart failure.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.8b02578