Hydrophilic Phytic Acid-Coated Magnetic Graphene for Titanium(IV) Immobilization as a Novel Hydrophilic Interaction Liquid Chromatography–Immobilized Metal Affinity Chromatography Platform for Glyco- and Phosphopeptide Enrichment with Controllable Selectivity

In this work, multifunctional Ti4+-immobilized phytic acid-modified magnetic graphene (denoted as MagG@PEI@PA-Ti4+) nanocomposites were fabricated through a facile route for simultaneous/respective enrichment of N-glyco- and phosphopeptides. Phytic acid (PA), with six phosphate groups, possesses exc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2018-09, Vol.90 (18), p.11008-11015
Hauptverfasser: Hong, Yayun, Zhao, Hongli, Pu, Chenlu, Zhan, Qiliang, Sheng, Qianying, Lan, Minbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, multifunctional Ti4+-immobilized phytic acid-modified magnetic graphene (denoted as MagG@PEI@PA-Ti4+) nanocomposites were fabricated through a facile route for simultaneous/respective enrichment of N-glyco- and phosphopeptides. Phytic acid (PA), with six phosphate groups, possesses excellent hydrophilicity and metal ion coordination ability, which endowed the MagG@PEI@PA-Ti4+ with combined properties of immobilized metal ion affinity chromatography (IMAC)- and hydrophilic interaction liquid chromatography (HILIC)-based materials. On the basis of the different binding ability of N-glyco- and phosphopeptides on MagG@PEI@PA-Ti4+, the MagG@PEI@PA-Ti4+ nanocomposites could enrich N-glyco- and phosphopeptides simultaneously or respectively by using different enrichment conditions, achieving controllable selective enrichment of N-glyco- and phosphopeptides. The proposed nanocomposites demonstrated an outstanding performance for selective enrichment of N-glycopeptides (selectivity, 1:1000 molar ratios of IgG/BSA; sensitivity, 0.5 fmol/μL IgG; loading capacity, 300 mg g–1; recovery, >90%) and phosphopeptides (selectivity, 1:5000 molar ratios of α-casein/BSA; sensitivity, 0.1 fmol/μL α-casein; loading capacity, 100 mg g–1; recovery, >90%). Taking advantage of these merits, a total of 393 N-glycopeptides derived from 259 glycoproteins and 574 phosphopeptides derived from 341 phosphoproteins were identified from 200 μg of HeLa cell extracts through a single-step enrichment using MagG@PEI@PA-Ti4+.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.8b02614