Hierarchical Binary CNNs for Landmark Localization with Limited Resources

Our goal is to design architectures that retain the groundbreaking performance of Convolutional Neural Networks (CNNs) for landmark localization and at the same time are lightweight, compact and suitable for applications with limited computational resources. To this end, we make the following contri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2020-02, Vol.42 (2), p.343-356
Hauptverfasser: Bulat, Adrian, Tzimiropoulos, Georgios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Our goal is to design architectures that retain the groundbreaking performance of Convolutional Neural Networks (CNNs) for landmark localization and at the same time are lightweight, compact and suitable for applications with limited computational resources. To this end, we make the following contributions: (a) we are the first to study the effect of neural network binarization on localization tasks, namely human pose estimation and face alignment. We exhaustively evaluate various design choices, identify performance bottlenecks, and more importantly propose multiple orthogonal ways to boost performance. (b) Based on our analysis, we propose a novel hierarchical, parallel and multi-scale residual architecture that yields large performance improvement over the standard bottleneck block while having the same number of parameters, thus bridging the gap between the original network and its binarized counterpart. (c) We perform a large number of ablation studies that shed light on the properties and the performance of the proposed block. (d) We present results for experiments on the most challenging datasets for human pose estimation and face alignment, reporting in many cases state-of-the-art performance. (e) We further provide additional results for the problem of facial part segmentation. Code can be downloaded from https://www.adrianbulat.com/binary-cnn-landmarks.
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2018.2866051