Genetic relationships and population structure of Malassezia pachydermatis strains isolated from dogs with otitis externa and healthy dogs

Malassezia pachydermatis causes infections of the skin and mucous membranes, especially in animals. It is commonly accepted that symptom manifestation depends on the physiological status of the host (different metabolic, hormonal, and immunological disorders). However, it should be considered whethe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mycologia 2018-07, Vol.110 (4), p.666-676
Hauptverfasser: Czyzewska, Urszula, Bartoszewicz, Marek, Siemieniuk, Magdalena, Tylicki, Adam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Malassezia pachydermatis causes infections of the skin and mucous membranes, especially in animals. It is commonly accepted that symptom manifestation depends on the physiological status of the host (different metabolic, hormonal, and immunological disorders). However, it should be considered whether distinct strains of M. pachydermatis could have different pathogenic potential and maintain opposite relations with the host, such as commensalism or parasitism. The scope of this study was to explore the population structure, genetic diversity, and phylogenetic relationships of M. pachydermatis strains isolated from dogs with clinical symptoms of otitis externa and from healthy dogs in order to investigate their relationships and evolutionary history. For all tests, a group of 30 strains derived from dogs with otitis externa and 34 strains from healthy dogs were used. The level of genetic diversity was initially assessed by polymerase chain reaction (PCR)-based random amplification of polymorphic DNA (RAPD-PCR), whereas evolutionary history was assessed by comparison of the nucleotide sequences of the internal transcribed spacer ITS1 region of nuclear rDNA. RAPD-PCR fingerprinting revealed a high level of genetic polymorphism in both tested groups (85% of unique profiles), but clinical isolates usually grouped together with other strains from otitis externa cases. Sequencing analysis identified 17 distinct genotypes with 59 polymorphic sites within both populations; however, putatively virulent strains were more closely related, indicating a probable correlation between the genotype and the virulence potential. Therefore, the hypothesis that M. pachydermatis virulence depends solely on the host's properties should be reconsidered including evolutionary and epidemiological data.
ISSN:0027-5514
1557-2536
DOI:10.1080/00275514.2018.1495981